Re: Problem in solving Differential Equation
- To: mathgroup at smc.vnet.net
- Subject: [mg130246] Re: Problem in solving Differential Equation
- From: Tomas Garza <tgarza10 at msn.com>
- Date: Thu, 28 Mar 2013 11:55:18 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References:
I do get the intended output. V. 9.0.1., Mac OS X 10.8.3. -Tomas > From: rahul.6sept at gmail.com > Subject: Re: Problem in solving Differential Equation > To: mathgroup at smc.vnet.net > Date: Thu, 28 Mar 2013 04:06:19 -0400 > > Sir, > > Its not giving output. The following error its showing > > ERROR: Set::write: : Tag List in {150 Cos[15 t]+5.` Sin[15 > t]==0,False}[t_] is Protected. > > DSolve::dsfun: "10\ Sin[15\ t] cannot be used as a function." > > ReplaceAll::reps: "{150\ Cos[15\ t]+5.\ Sin[15\ t]==0,False} is > neither a list of replacement rules nor a valid dispatch table, and so > cannot be used for replacing" > > > > These ERROR messages are coming repeatedly. > > > > Regards, > > Rahul > > On 3/28/13, Bob Hanlon <hanlonr357 at gmail.com> wrote: > > Your DE can be solved exactly using DSolve. > > > > Manipulate[ > > eqn = x'[t] + lambda*x[t] == 0; > > sol[t_] = x[t] /. DSolve[ > > {eqn, x[0] == 1/2}, x[t], t][[1]]; > > ParametricPlot[ > > {sol[t], sol'[t]}, > > {t, 0, 25}, > > PlotRange -> {{-0.1, 0.6}, {-3, 0.5}}, > > Frame -> True, > > Axes -> False, > > FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ > > {x, Overscript[x, "."]}), > > AspectRatio -> 1, > > PlotStyle -> {{Red, AbsoluteThickness[2]}}], > > {{lambda, 0.5}, 0, 5, 0.01, Appearance -> "Labeled"}] > > > > > > Bob Hanlon > > > > > > On Wed, Mar 27, 2013 at 11:29 PM, Rahul Chakraborty > > <rahul.6sept at gmail.com> wrote: > >> Sir, > >> > >> Can you kindly see what is the mistake in this code of mine. Its not > >> giving me the output. > >> > >> > >> Clear [x,t]; > >> eqn=x'[t]+lambda*x[t]==0; > >> Manipulate[[sol_]=NDSolve[{eqn,x[0]==1/2},x[t],{t,0,50= }][[1]]; > >> ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,25}= ,PlotRange->{{-20,20},{-25,25}},Frame->True,Axes->False,Frame= Label->(Style[#,"Courier",Bold,16]&/@{"x",Overscript[x,"."]}),A= spectRatio->1,PlotStyle->{{Red,AbsoluteThickness[2]}}],{{lambda,0.5= },0,5}] > >> > >> > >> > >> Sincerely, > >> > >> Rahul > >> > >> On 3/6/13, Bob Hanlon <hanlonr357 at gmail.com> wrote: > >>> Arguments to functions (e.g., Sin, Cos) must be enclosed in squar= es > >>> brackets: Sin[x[t]] and Cos[x[t]] > >>> > >>> Clear[x]; > >>> \[Omega] = -2; > >>> eqn = > >>> x''[t] + Sin[x[t]] - \[Omega]^2 Sin [x[t]] Cos[x[t]] == 0 // > >>> Simplify; > >>> sol = NDSolve[ > >>> {eqn, x[0] == 1/2, x'[0] == 0}, > >>> x[t], {t, 0, 25}][[1]]; > >>> ParametricPlot[ > >>> Evaluate[{x[t] /. sol, D[x[t] /. sol, t]}], > >>> {t, 0, 25}, > >>> Frame -> True, > >>> Axes -> False, > >>> FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ > >>> {x, Overscript[x, "."]}), > >>> AspectRatio -> 1, > >>> PlotStyle -> {{Red, AbsoluteThickness[2]}}] > >>> ParametricPlot[ > >>> Evaluate[{t, x[t] /. sol}], > >>> {t, 0, 10}, > >>> Frame -> True, > >>> Axes -> False, > >>> FrameLabel -> (Style[#, "Courier", Bold, 16] & /@ > >>> {t, x}), > >>> AspectRatio -> .5, > >>> PlotStyle -> {{Green, AbsoluteThickness[3]}}] > >>> > >>> > >>> Bob Hanlon > >>> > >>> > >>> On Tue, Mar 5, 2013 at 10:14 PM, Rahul Chakraborty > >>> <rahul.6sept at gmail.com> wrote: > >>>> Dear all, > >>>> > >>>> Following differential equation seems to have some error in coding = by > >>>> me. > >>>> kindly let me know where i have gone wrong. > >>>> > >>>> Clear[x]; > >>>> \[Omega]:=-2; > >>>> eqn=x''[t]+ Sin x[t]-\[Omega]^2 Sin x[t]Cos x[t]==0//Simpl= if= > y; > >>>> sol=NDSolve[{eqn,x[0]==1/2,x'[0]==0},x[t],{t,0= ,1000}][[1]] > >>>> ParametricPlot[Evaluate[{x[t]/.sol,D[x[t]/.sol,t]}],{t,0,2= 5},Frame->True,AxesLabel->{"x",Overscript[x,"."]},AspectRatio->1= ,PlotStyle->{{Red,AbsoluteThickness[2]}},TextStyle->{FontFamily->"Cou= rier",FontWeight->"Bold",FontSize->16}] > >>>> ParametricPlot[Evaluate[{t,x[t]/.sol}],{t,0,10},Frame->Tru= e,AxesLabel->{"t","x"},AspectRatio->.5,PlotStyle->{{Green,Absolut= eThickness[3]}},TextStyle->{FontFamily->"Courier",FontWeight->"Bold",= FontSize->16}] > >>>> > >>>> Regards, > >>>> > >>>> rahul > >>>> > >>> > >