Re: cubic equation solver
- To: mathgroup at smc.vnet.net
- Subject: [mg130245] Re: cubic equation solver
- From: Peter Pein <petsie at dordos.net>
- Date: Thu, 28 Mar 2013 11:54:58 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <kj0tko$iiv$1@smc.vnet.net>
Am 28.03.2013 09:05, schrieb Elim Qiu: > x^3 + (=E2=88=9A6 + 2=E2=88=9A3 + 2=E2=88=9A2 -9)x + 2=E2=88=9A3 -=E2=88=9A2 -2 = 0 > has exact roots =E2=88=9A2-2, =E2=88=9A3-=E2=88=9A2, 2-=E2=88=9A3 > > But Mathematica says: > > Solve[x^3 + (Sqrt[6] + 2 Sqrt[3] + 2 Sqrt[2] - 9) x + 2 Sqrt[3] - > Sqrt[2] - 2 == 0, x] > > {{x -> (1/ > 2 (18 + 9 Sqrt[2] - 18 Sqrt[3] + > I Sqrt[3 (4662 - 1252 Sqrt[2] - 1296 Sqrt[3] - .... Hi, as parts of your message are unreadable here, I do not know if In[1]:= Solve[x^3 + (Sqrt[6] + 2*Sqrt[3] + 2*Sqrt[2] - 9)*x + 2*Sqrt[3] - Sqrt[2] - 2 == 0, x] // RootReduce // ToRadicals // InputForm Out[1]//InputForm= {{x -> Sqrt[5 - 2*Sqrt[6]]}, {x -> 2 - Sqrt[3]}, {x -> -2 + Sqrt[2]}} is what you expect. Peter