Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2013

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Plot InverseSurvivalFunction

  • To: mathgroup at smc.vnet.net
  • Subject: [mg132016] Re: Plot InverseSurvivalFunction
  • From: "Eduardo M. A. M. Mendes" <emammendes at gmail.com>
  • Date: Sun, 17 Nov 2013 18:21:15 -0500 (EST)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-outx@smc.vnet.net
  • Delivered-to: mathgroup-newsendx@smc.vnet.net
  • References: <20131115114157.A96816A4F@smc.vnet.net> <CAEtRDScEf8=PeTHu_ZwmOZ11JX0Qgofe9KJc_J0gzUgyhTteAw@mail.gmail.com>

Many many thanks

Ed

On Nov 15, 2013, at 5:36 PM, Bob Hanlon <hanlonr357 at gmail.com> wrote:

> I recommend that you estimate it using an interpolation function
> 
> \[ScriptCapitalD] = TransformedDistribution[u + v, 
>     {Distributed[u, FRatioDistribution[2, 2*2]], 
>      Distributed[v, FRatioDistribution[2, 2*2]]}]; 
> 
> Plot[Evaluate[SurvivalFunction[\[ScriptCapitalD],x]],
> {x,0,10},Filling->Axis]
> 
> survFunc[x_]=Evaluate[SurvivalFunction[\[ScriptCapitalD],x]]
> 
> Piecewise[{{1, x <= 0}}, 
>   1 - (x*(192 + 304*x + 120*x^2 + 18*x^3 + x^4) - 
>      192*(2 + x)*Log[(2 + x)/2])/((2 + x)*(4 + x)^4)]
> 
> invSurvFuncEst=Interpolation[Reverse/@
> Table[{x,survFunc[x]},{x,0,10,0.005}]];
> 
> (invSurvFuncEst/@(survFunc/@Range[0,10,0.005]))==
> Range[0,10,0.005]
> 
> True
> 
> Plot[invSurvFuncEst[q],{q,survFunc[10],1},
> AxesOrigin->{0,0},Filling->Axis]
> 
> invSurvFuncEst[0.95]
> 
> 0.37722527322144106
> 
> Evaluate[SurvivalFunction[\[ScriptCapitalD],x]]/.x->%
> 
> 0.949999999642922
> 
> 
> Bob Hanlon
> 




  • Prev by Date: Implementation of Discrete Spherical Harmonic Transforms with Mathematica?
  • Next by Date: Re: Plot InverseSurvivalFunction
  • Previous by thread: Re: Plot InverseSurvivalFunction
  • Next by thread: Re: Plot InverseSurvivalFunction