Re: Plot InverseSurvivalFunction
- To: mathgroup at smc.vnet.net
- Subject: [mg132016] Re: Plot InverseSurvivalFunction
- From: "Eduardo M. A. M. Mendes" <emammendes at gmail.com>
- Date: Sun, 17 Nov 2013 18:21:15 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <20131115114157.A96816A4F@smc.vnet.net> <CAEtRDScEf8=PeTHu_ZwmOZ11JX0Qgofe9KJc_J0gzUgyhTteAw@mail.gmail.com>
Many many thanks Ed On Nov 15, 2013, at 5:36 PM, Bob Hanlon <hanlonr357 at gmail.com> wrote: > I recommend that you estimate it using an interpolation function > > \[ScriptCapitalD] = TransformedDistribution[u + v, > {Distributed[u, FRatioDistribution[2, 2*2]], > Distributed[v, FRatioDistribution[2, 2*2]]}]; > > Plot[Evaluate[SurvivalFunction[\[ScriptCapitalD],x]], > {x,0,10},Filling->Axis] > > survFunc[x_]=Evaluate[SurvivalFunction[\[ScriptCapitalD],x]] > > Piecewise[{{1, x <= 0}}, > 1 - (x*(192 + 304*x + 120*x^2 + 18*x^3 + x^4) - > 192*(2 + x)*Log[(2 + x)/2])/((2 + x)*(4 + x)^4)] > > invSurvFuncEst=Interpolation[Reverse/@ > Table[{x,survFunc[x]},{x,0,10,0.005}]]; > > (invSurvFuncEst/@(survFunc/@Range[0,10,0.005]))== > Range[0,10,0.005] > > True > > Plot[invSurvFuncEst[q],{q,survFunc[10],1}, > AxesOrigin->{0,0},Filling->Axis] > > invSurvFuncEst[0.95] > > 0.37722527322144106 > > Evaluate[SurvivalFunction[\[ScriptCapitalD],x]]/.x->% > > 0.949999999642922 > > > Bob Hanlon >
- References:
- Plot InverseSurvivalFunction
- From: "Eduardo M. A. M. Mendes" <emammendes@gmail.com>
- Plot InverseSurvivalFunction