Re: 3DAspectRatio

• To: mathgroup at smc.vnet.net
• Subject: [mg131803] Re: 3DAspectRatio
• From: Bob Hanlon <hanlonr357 at gmail.com>
• Date: Tue, 8 Oct 2013 03:52:55 -0400 (EDT)
• Delivered-to: l-mathgroup@mail-archive0.wolfram.com
• Delivered-to: l-mathgroup@wolfram.com
• Delivered-to: mathgroup-outx@smc.vnet.net
• Delivered-to: mathgroup-newsendx@smc.vnet.net
• References: <20131007122401.C2A4C6A0F@smc.vnet.net>

a = 3; c = 5;
ConPl = ContourPlot3D[
(Sqrt[x^2 + y^2] - c)^2 + z^2 == a^2,
{x, -8, 8}, {y, -8, 8}, {z, -3.1, 3.1},
PlotRange -> {{-8, 8}, {-8, 8}, {-4, 4}},
BoxRatios -> {1, 1, 1/2}]
ParPl = ParametricPlot3D[
{(a Cos[u] + c) Cos[v], (a Cos[u] + c) Sin[v], a Sin[u]},
{u, 0, 2 Pi}, {v, 0, 2 Pi},
PlotRange -> {{-8, 8}, {-8, 8}, {-4, 4}},
BoxRatios -> {1, 1, 1/2}]
Sph = ParametricPlot3D[
{Cos[ph] Cos[t], Cos[ph] Sin[t], Sin[ph]},
{ph, -1.5, 1.5}, {t, 0, 2 Pi},
PlotRange -> {{-8, 8}, {-8, 8}, {-4, 4}},
BoxRatios -> {1, 1, 1/2}]
Show[ParPl, ConPl, Sph,
PlotRange -> {{-8, 8}, {-8, 8}, {-4, 4}},
BoxRatios -> {1, 1, 1/2}]
Show[ConPl, ParPl, Sph,
PlotRange -> {{-8, 8}, {-8, 8}, {-4, 4}},
BoxRatios -> {1, 1, 1/2}]

Bob Hanlon

On Mon, Oct 7, 2013 at 8:24 AM, Narasimham <mathma18 at gmail.com> wrote:

> a=3; c=5;
> ConPl=ContourPlot3D[ (Sqrt[x^2+y^2]- c)^2 + z^2 == a ^2 ,
> {x,-8,8},{y,-8,8},{z,-3.1,3.1}]
> ParPl=ParametricPlot3D[{ (a Cos[u]+c) Cos[v],  (a Cos[u]+c) Sin[v],  a
> Sin[u]},{u,0, 2Pi},{v,0, 2 Pi}]
> Sph= ParametricPlot3D[1{ Cos[ph]Cos[t], Cos[ph] Sin[t], Sin[ph]},
> {ph,-1.5,1.5},{t,0, 2 Pi}]
> Show[ParPl,ConPl,Sph]
> Show[ConPl,ParPl,Sph]
>
> Is there some way to ContourPlot3D maintaining AspectRatio  along all its
> three axes?
>
> Regards
> Narasimham
>
>

• Prev by Date: Re: PredictiveInterfaceOptions
• Next by Date: Re: ListLogLinearPlot crystal filter