Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2013

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: 3DAspectRatio

  • To: mathgroup at smc.vnet.net
  • Subject: [mg131808] Re: 3DAspectRatio
  • From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
  • Date: Wed, 9 Oct 2013 02:11:39 -0400 (EDT)
  • Delivered-to: l-mathgroup@mail-archive0.wolfram.com
  • Delivered-to: l-mathgroup@wolfram.com
  • Delivered-to: mathgroup-outx@smc.vnet.net
  • Delivered-to: mathgroup-newsendx@smc.vnet.net

a=3; c=5;
ConPl=ContourPlot3D[ (Sqrt[x^2+y^2]- c)^2 + z^2 == a ^2 , {x,-8,8},{y,-8,8},{z,-3.1,3.1}]
ParPl=ParametricPlot3D[{ (a Cos[u]+c) Cos[v],  (a Cos[u]+c) Sin[v],  a Sin[u]},{u,0, 2Pi},{v,0, 2 Pi}]
Sph= ParametricPlot3D[1{ Cos[ph]Cos[t], Cos[ph] Sin[t], Sin[ph]}, {ph,-1.5,1.5},{t,0, 2 Pi}]
Show[ParPl,ConPl,Sph]
Show[ConPl,ParPl,Sph]

Is there some way to ContourPlot3D maintaining AspectRatio  along all its three axes?

Regards
Narasimham


Hi, Narasimham,

The option BoxRatios makes the job. Try this:

a = 3; c = 5;

Row[{
ContourPlot3D[(Sqrt[x^2 + y^2] - c)^2 + z^2 == a^2, {x, -8,
    8}, {y, -8, 8}, {z, -3.1, 3.1}, ImageSize -> 250],

  ContourPlot3D[(Sqrt[x^2 + y^2] - c)^2 + z^2 == a^2, {x, -8,
    8}, {y, -8, 8}, {z, -3.1, 3.1}, BoxRatios -> {1, 2, 3},
   ImageSize -> 250]
}]



Have fun, Alexei

Alexei BOULBITCH, Dr., habil.
IEE S.A.
ZAE Weiergewan,
11, rue Edmond Reuter,
L-5326 Contern, LUXEMBOURG

Office phone :  +352-2454-2566
Office fax:       +352-2454-3566
mobile phone:  +49 151 52 40 66 44

e-mail: alexei.boulbitch at iee.lu





  • Prev by Date: RV: Version 9 Trial contaminates Version 8 running paid version
  • Next by Date: Newton-Raphson Root Finding, Difficulty in coding
  • Previous by thread: Re: 3DAspectRatio
  • Next by thread: ListLogLinearPlot crystal filter