Re: 3DAspectRatio
- To: mathgroup at smc.vnet.net
- Subject: [mg131808] Re: 3DAspectRatio
- From: Alexei Boulbitch <Alexei.Boulbitch at iee.lu>
- Date: Wed, 9 Oct 2013 02:11:39 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
a=3; c=5; ConPl=ContourPlot3D[ (Sqrt[x^2+y^2]- c)^2 + z^2 == a ^2 , {x,-8,8},{y,-8,8},{z,-3.1,3.1}] ParPl=ParametricPlot3D[{ (a Cos[u]+c) Cos[v], (a Cos[u]+c) Sin[v], a Sin[u]},{u,0, 2Pi},{v,0, 2 Pi}] Sph= ParametricPlot3D[1{ Cos[ph]Cos[t], Cos[ph] Sin[t], Sin[ph]}, {ph,-1.5,1.5},{t,0, 2 Pi}] Show[ParPl,ConPl,Sph] Show[ConPl,ParPl,Sph] Is there some way to ContourPlot3D maintaining AspectRatio along all its three axes? Regards Narasimham Hi, Narasimham, The option BoxRatios makes the job. Try this: a = 3; c = 5; Row[{ ContourPlot3D[(Sqrt[x^2 + y^2] - c)^2 + z^2 == a^2, {x, -8, 8}, {y, -8, 8}, {z, -3.1, 3.1}, ImageSize -> 250], ContourPlot3D[(Sqrt[x^2 + y^2] - c)^2 + z^2 == a^2, {x, -8, 8}, {y, -8, 8}, {z, -3.1, 3.1}, BoxRatios -> {1, 2, 3}, ImageSize -> 250] }] Have fun, Alexei Alexei BOULBITCH, Dr., habil. IEE S.A. ZAE Weiergewan, 11, rue Edmond Reuter, L-5326 Contern, LUXEMBOURG Office phone : +352-2454-2566 Office fax: +352-2454-3566 mobile phone: +49 151 52 40 66 44 e-mail: alexei.boulbitch at iee.lu