Re: Finding branches where general solution is possible
- To: mathgroup at smc.vnet.net
- Subject: [mg131847] Re: Finding branches where general solution is possible
- From: "Dr. Wolfgang Hintze" <weh at snafu.de>
- Date: Thu, 17 Oct 2013 00:16:14 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <l3ljoe$jt5$1@smc.vnet.net>
Am Mittwoch, 16. Oktober 2013 10:46:06 UTC+2 schrieb Narasimham: > For following function with period 2 Pi in which branches is it possible to get a general solution? > > > > Regards > > Narasimham > > > > DSolve[{si''[th] Tan[si[th]]==(1+si'[th]) (1+2si'[th]),si[0]==Pi/4 },si,th] > > NDSolve[{si''[th] Tan[si[th]]==(1+si'[th]) (1+2si'[th]),si'[0]==0,si[0]==Pi/4},si,{th,0,6Pi}]; > > SI[u_]=si[u]/.First[%];Plot[SI[th],{th,0,6Pi}] > > > > DSolve::bvnul: For some branches of the general solution, the given boundary conditions lead to an empty solution.>> Version 8 of Mathematica has no difficulty in DSolve-ing the equation generally. The solution is given in terms of InverseFunction as follows: In[1]:= eq = Derivative[2][s][t] == Cot[s[t]]*(1 + Derivative[1][s][t])*(1 + 2*Derivative[1][s][t]) Out[1]= Derivative[2][s][t] == Cot[s[t]]*(1 + Derivative[1][s][t])*(1 + 2*Derivative[1][s][t]) In[2]:= DSolve[eq, s[t], t] Out[2]= { {s[t] -> InverseFunction[ 2*(-((I*E^C[1]*Cos[#1/2]^3* Log[2*I*E^C[1]*Cos[#1] - Sqrt[2]*Cos[#1/2]^2* Sqrt[(-2 + E^(2*C[1]) - E^(2*C[1])*Cos[2*#1])* Sec[#1/2]^4]]* Sqrt[(-(2 - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1]))* Sec[#1/2]^4]*Sin[#1/2])/ Sqrt[(-E^(2*C[1]))*(2 - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1])*Sin[#1]^2]) - #1/2) & ][ t + C[2]]}, {s[t] -> InverseFunction[-2*(-((I*E^C[1]*Cos[#1/2]^3* Log[2*I*E^C[1]*Cos[#1] - Sqrt[2]*Cos[#1/2]^2* Sqrt[(-2 + E^(2*C[1]) - E^(2*C[1])*Cos[2*#1])* Sec[#1/2]^4]]* Sqrt[(-(2 - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1]))* Sec[#1/2]^4]*Sin[#1/2])/ Sqrt[(-E^(2*C[1]))*(2 - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1])*Sin[#1]^2]) + #1/2) & ][ t + C[2]]}} Best regards, Wolfgang