Re: Finding branches where general solution is possible
- To: mathgroup at smc.vnet.net
- Subject: [mg131864] Re: Finding branches where general solution is possible
- From: "Dr. Wolfgang Hintze" <weh at snafu.de>
- Date: Sat, 19 Oct 2013 04:12:16 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <l3ljoe$jt5$1@smc.vnet.net> <l3no2j$ov6$1@smc.vnet.net>
Am Donnerstag, 17. Oktober 2013 06:12:03 UTC+2 schrieb Dr. Wolfgang Hintze: > Am Mittwoch, 16. Oktober 2013 10:46:06 UTC+2 schrieb Narasimham: > > > For following function with period 2 Pi in which branches is it possible to get a general solution? > > > > > > > > > > > > Regards > > > > > > Narasimham > > > > > > > > > > > > DSolve[{si''[th] Tan[si[th]]==(1+si'[th]) (1+2si'[th]),si[0]==Pi/4 },si,th] > > > > > > NDSolve[{si''[th] Tan[si[th]]==(1+si'[th]) (1+2si'[th]),si'[0]==0,si[0]==Pi/4},si,{th,0,6Pi}]; > > > > > > SI[u_]=si[u]/.First[%];Plot[SI[th],{th,0,6Pi}] > > > > > > > > > > > > DSolve::bvnul: For some branches of the general solution, the given boundary conditions lead to an empty solution.>> > > > > Version 8 of Mathematica has no difficulty in DSolve-ing the equation generally. > > The solution is given in terms of InverseFunction as follows: > > > > In[1]:= eq = > > Derivative[2][s][t] == > > Cot[s[t]]*(1 + Derivative[1][s][t])*(1 + 2*Derivative[1][s][t]) > > > > Out[1]= Derivative[2][s][t] == > > Cot[s[t]]*(1 + Derivative[1][s][t])*(1 + 2*Derivative[1][s][t]) > > > > In[2]:= DSolve[eq, s[t], t] > > > > Out[2]= { > > {s[t] -> > > InverseFunction[ > > 2*(-((I*E^C[1]*Cos[#1/2]^3* > > Log[2*I*E^C[1]*Cos[#1] - > > Sqrt[2]*Cos[#1/2]^2* > > Sqrt[(-2 + E^(2*C[1]) - E^(2*C[1])*Cos[2*#1])* > > Sec[#1/2]^4]]* > > > > Sqrt[(-(2 - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1]))* > > Sec[#1/2]^4]*Sin[#1/2])/ > > Sqrt[(-E^(2*C[1]))*(2 - E^(2*C[1]) + > > E^(2*C[1])*Cos[2*#1])*Sin[#1]^2]) - #1/2) & ][ > > t + C[2]]}, > > {s[t] -> > > InverseFunction[-2*(-((I*E^C[1]*Cos[#1/2]^3* > > Log[2*I*E^C[1]*Cos[#1] - > > Sqrt[2]*Cos[#1/2]^2* > > Sqrt[(-2 + E^(2*C[1]) - E^(2*C[1])*Cos[2*#1])* > > Sec[#1/2]^4]]* > > > > Sqrt[(-(2 - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1]))* > > Sec[#1/2]^4]*Sin[#1/2])/ > > Sqrt[(-E^(2*C[1]))*(2 - E^(2*C[1]) + > > E^(2*C[1])*Cos[2*#1])*Sin[#1]^2]) + #1/2) & ][ > > t + C[2]]}} > > > > Best regards, > > Wolfgang In order to make things (which Mathematica "knows") more tranparent consider that the differential equation is of the form s''(t) = f(s(t)) g(s'(t)) Here variables can be separated as follows. Letting s' = u and using s as the indepent variable instead of t we have du/dt = du/ds ds/dt = du/ds u and the differential equation becomes du/ds u = f(s) g(u) or du u/g(u) = ds f(s) This can be integrated once and gives (possibly implicitly) u as a function h of s and the constant C[1]. But this is another differential equation ds/dt = h(s,C[1]) which can be integrated to give Int(1/h(s,C[1])) = t+C[2] This is then the general solution (two constants of integration) in the inverted form t = t(s). Best regards, Wolfgang