Need help building a module
- To: mathgroup at smc.vnet.net
- Subject: [mg131905] Need help building a module
- From: Gilmar Rodriguez-pierluissi <peacenova at yahoo.com>
- Date: Mon, 28 Oct 2013 23:23:56 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- Reply-to: Gilmar Rodriguez-pierluissi <peacenova at yahoo.com>
Dear Math Group Friends: Starting with the following three sets: Z = {0}; R = {1, 3, 4, 9, 10, 12, 13, 27, 28, 30, 31, 36, 37, 39, 40}; L = {1, 3, 4, 9, 10, 12, 13}; First do the following evaluations (the results of the evaluations are included): (************************) R[[1]] - Z[[1]] 1 (************************) R[[2]] - Z[[1]] 3 R[[2]] - L[[1]] 2 (************************) R[[3]] - Z[[1]] 4 (** The following two evaluations produce values (i.e.; 3 and 1) that already occurred in the above evaluations and therefore are discarded. The discarted evaluations (and their results) are surrounded by (** **) to identify them: **) (** R[[3]]-L[[1]] **) (** 3 **) (** R[[3]]-L[[2]] **) (** 1 **) (************************) R[[4]] - Z[[1]] 9 R[[4]] - L[[1]] 8 R[[4]] - L[[2]] 6 R[[4]] - L[[3]] 5 (************************) R[[5]] - Z[[1]] 10 (** R[[5]]-L[[1]] **) (** 9 **) R[[5]] - L[[2]] 7 (** R[[5]]-L[[3]] **) (** 6 **) (** R[[5]]-L[[4]] **) (** 1 **) (************************) R[[6]] - Z[[1]] 12 R[[6]] - L[[1]] 11 (** R[[6]]-L[[2]] **) (** 9 **) (** R[[6]]-L[[3]] **) (** 8 **) (** R[[6]]-L[[4]]**) (** 3 **) (** R[[6]]-L[[5]] **) (** 2 **) (************************) R[[7]] - Z[[1]] 13 (** R[[7]]-L[[1]] **) (** 12 **) (** R[[7]]-L[[2]] **) (** 10 **) (** R[[7]]-L[[3]] **) (* 9 *) (** R[[7]]-L[[4]] **) (** 4 **) (** R[[7]]-L[[5]] **) (** 3 **) (** R[[7]]-L[[6]] **) (** 1 **) (************************) R[[8]] - Z[[1]] 27 R[[8]] - L[[1]] 26 R[[8]] - L[[2]] 24 R[[8]] - L[[3]] 23 R[[8]] - L[[4]] 18 R[[8]] - L[[5]] 17 R[[8]] - L[[6]] 15 R[[8]] - L[[7]] 14 (************************) R[[9]] - Z[[1]] 28 (** R[[9]]-L[[1]] **) (** 27 **) R[[9]] - L[[2]] 25 (** R[[9]]-L[[3]] **) (** 24 **) R[[9]] - L[[4]] 19 (** R[[9]]-L[[5]] **) (** 18 **) R[[9]] - L[[6]] 16 (** R[[9]]-L[[7]] **) (** 15 **) (************************) R[[10]] - Z[[1]] 30 R[[10]] - L[[1]] 29 (** R[[10]]-L[[2]] **) (** 27 **) (** R[[10]]-L[[3]] **) (** 26 **) R[[10]] - L[[4]] 21 R[[10]] - L[[5]] 20 (** R[[10]]-L[[6]] **) (** 18 **) (** R[[10]]-L[[7]] **) (** 17 **) (************************) R[[11]] - Z[[1]] 31 (** R[[11]]-L[[1]] **) (** 30 **) (** R[[11]]-L[[2]] **) (** R[[11]]-L[[3]] **) (** 27 **) R[[11]] - L[[4]] 22 (** R[[11]]-L[[5]] **) (** 21 **) (** R[[11]]-L[[6]] **) (** 19 **) (** R[[11]]-L[[7]] **) (** 18 **) (************************) R[[12]] - Z[[1]] 36 R[[12]] - L[[1]] 35 R[[12]] - L[[2]] 33 R[[12]] - L[[3]] 32 (** R[[12]]-L[[4]] **) (** 27 **) (** R[[12]]-L[[5]] **) (** 26 **) (** R[[12]]-L[[6]] **) (** 24 **) (** R[[12]]-L[[7]] **) (** 23 **) (************************) R[[13]] - Z[[1]] 37 (** R[[13]]-L[[1]] **) (** 36 **) R[[13]] - L[[2]] 34 (** R[[13]]-L[[3]] **) (** 33 **) (** R[[13]]-L[[4]] **) (** 28 **) (** R[[13]]-L[[5]] **) (** 27 **) (** R[[13]]-L[[6]] **) (** 25 **) (** R[[13]]-L[[7]] **) (** 24 **) (************************) R[[14]] - Z[[1]] 39 R[[14]] - L[[1]] 38 (** R[[14]]-L[[2]] **) (** 36 **) (** R[[14]]-L[[3]] **) (** 35 **) (** R[[14]]-L[[4]] **) (** 30 **) (** R[[14]]-L[[5]] **) (** 29 **) (** R[[14]]-L[[6]] **) (** 27 **) (** R[[14]]-L[[7]] **) (** 26 **) (************************) R[[15]] - Z[[1]] 40 (** R[[15]]-L[[1]] **) (** 39 **) (** R[[15]]-L[[2]] **) (** 37 **) (** R[[15]]-L[[3]] **) (** 36 **) (** R[[15]]-L[[4]] **) (** 31 **) (** R[[15]]-L[[5]] **) (** 30 **) (** R[[15]]-L[[6]] **) (** 28 **) (** R[[15]]-L[[7]] **) (** 27 **) Next; sort the undiscarted evaluations in descending order (i.e. sort the values that the undiscarted evaluation attain) as follows (the results of the evaluations are also included): R[[1]] - Z[[1]] 1 (*******************) R[[2]] - L[[1]] 2 (*******************) R[[2]] - Z[[1]] 3 (******************) R[[3]] - Z[[1]] 4 (*****************) R[[4]] - L[[3]] 5 (*****************) R[[4]] - L[[2]] 6 (*****************) R[[5]] - L[[2]] 7 (*****************) R[[4]] - L[[1]] 8 (*****************) R[[4]] - Z[[1]] 9 (*****************) R[[5]] - Z[[1]] 10 (****************) R[[6]] - L[[1]] 11 (****************) R[[6]] - Z[[1]] 12 (***************) R[[7]] - Z[[1]] 13 (***************) R[[8]] - L[[7]] 14 (***************) R[[8]] - L[[6]] 15 (***************) R[[9]] - L[[6]] 16 (***************) R[[8]] - L[[5]] 17 (***************) R[[8]] - L[[4]] 18 (***************) R[[9]] - L[[4]] 19 (****************) R[[10]] - L[[5]] 20 (****************) R[[10]] - L[[4]] 21 (****************) R[[11]] - L[[4]] 22 (****************) R[[8]] - L[[3]] 23 (****************) R[[8]] - L[[2]] 24 (***************) R[[9]] - L[[2]] 25 (***************) R[[8]] - L[[1]] 26 (***************) R[[8]] - Z[[1]] 27 (***************) R[[9]] - Z[[1]] 28 (***************) R[[10]] - L[[1]] 29 (***************) R[[10]] - Z[[1]] 30 (***************) R[[11]] - Z[[1]] 31 (**************) R[[12]] - L[[3]] 32 (**************) R[[12]] - L[[2]] 33 (**************) R[[13]] - L[[2]] 34 (**************) R[[12]] - L[[1]] 35 (**************) R[[12]] - Z[[1]] 36 (**************) R[[13]] - Z[[1]] 37 (**************) R[[14]] - L[[1]] 38 (**************) R[[14]] - Z[[1]] 39 (**************) R[[15]] - Z[[1]] 40 What I need is a module f[n] such that if I evaluate: f[1] the module returns {Z[[1]], R[[1]]} = {0,1}. Similarly; f[2] = {L[[1]], R[[2]]} = {1,3} f[3] = {0,3} f[4] = {0,4} f[5] = {4, 9} etc. f[40]= {0, 40}. Sorry about the lengthy presentation and thank you for your help!