Re: Cyclic generator of a cyclic expression
- To: mathgroup at smc.vnet.net
- Subject: [mg131751] Re: Cyclic generator of a cyclic expression
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Fri, 27 Sep 2013 02:30:52 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <20130926074243.E82906A68@smc.vnet.net>
I'm uncertain as to what you are asking. This may or may not help. expr1 = x^4 + y^4 + z^4 - y^2 z^2 - z^2 x^2 - x^2 y^2; expr2 = x^4 - y^2 z^2; f1[elem_List] := ExpandAll[Total[ Subtract @@ (#^2)^2 & /@ Subsets[elem, {2}]]] /. (a_?NumericQ* x_^n_) :> Sign[a]*x^n; Two examples: f1 /@ {{x, y, z}, {t, x, y, z}} {x^4 - x^2*y^2 + y^4 - x^2*z^2 - y^2*z^2 + z^4, t^4 - t^2*x^2 + x^4 - t^2*y^2 - x^2*y^2 + y^4 - t^2*z^2 - x^2*z^2 - y^2*z^2 + z^4} f2[elem_List] := First[elem]^4 - Times @@ Rest[elem]^2 Two examples: f2 /@ {{x, y, z}, {t, x, y, z}} {x^4 - y^2*z^2, t^4 - x^2*y^2*z^2} f1[Variables[expr2]] == expr1 True f2[Variables[expr1]] == expr2 True Bob Hanlon On Thu, Sep 26, 2013 at 3:42 AM, Francisco Javier Garc=EDa Capit=E1n < garciacapitan at gmail.com> wrote: > Dear friends, > > Given a cyclic expression say in x,y,z like > > x^4 + y^4 + z^4 - y^2 z^2 - z^2 x^2 - x^2 y^2 > > what is your more or less elegant way to get a cyclic generator, like > > x^4 - y^2 z^2 ? > > Thank you very much. > > -- > --- > Francisco Javier Garc=EDa Capit=E1n > http://garciacapitan.99on.com > > >
- References:
- Cyclic generator of a cyclic expression
- From: Francisco Javier García Capitán <garciacapitan@gmail.com>
- Cyclic generator of a cyclic expression