Behavior of ComplexExpand
- To: mathgroup at yoda.physics.unc.edu
- Subject: Behavior of ComplexExpand
- From: Levent Kitis <lk3a at kelvin.seas.virginia.edu>
- Date: Wed, 4 Aug 93 17:34:27 -0400
Does someone have an explanantion for the discrepancy between Out[2] and Out[3]? In[2]:= ComplexExpand[ Conjugate[ Exp[a I] ] ] Out[2]= Cos[a] + I Sin[a] In[3]:= ComplexExpand[ Exp[a I] ] Out[3]= Cos[a] + I Sin[a] If a is replaced with a numerical value the same situation persists: In[6]:= ComplexExpand[ Conjugate[ Exp[2 I] ] ] == ComplexExpand[ Exp[2 I] ] Out[6]= True But ComplexExpand works with a little help: In[10]:= ComplexExpand[ Conjugate[z], {z} ] Out[10]= -I Im[z] + Re[z] In[11]:= ComplexExpand[ Conjugate[z], {z}] /. {z -> Exp[2 I]} Out[11]= Cos[2] - I Sin[2] and with a symbolic argument a: In[13]:= ComplexExpand[ Conjugate[z], {z}] /. {z -> Exp[a I]} Out[13]= -I Im[E^(I a)] + Re[E^(I a)] In[14]:= ComplexExpand[%] Out[14]= Cos[a] - I Sin[a] and this too works: In[15]:= ComplexExpand[ Conjugate[Exp[a I]], {Exp[a I]}] Out[15]= Cos[a] - I Sin[a] In[17]:= ComplexExpand[ Conjugate[Exp[a I]], {a I}] Out[17]= Cos[a] + I Sin[a] Why shouldn't In[2] be equivalent to In[17] ? All this in Version 2.0. Levent