Re: Polonomyal Quotient

• To: mathgroup at smc.vnet.net
• Subject: [mg2374] Re: Polonomyal Quotient
• From: danl (Daniel Lichtblau)
• Date: Sun, 29 Oct 1995 22:49:18 -0500
• Organization: Wolfram Research, Inc.

```In article <46n9mt\$4cd at ralph.vnet.net>
hans.steffani at e-technik.tu-chemnitz.de (Hans Steffani) writes:
> In[5]:= (1.  t^3 + 2 t^5) / ( t^2 ( 3 + 4 t^2) )
>
>             3      5
>         1. t  + 2 t
> Out[5]= -------------
>          2         2
>         t  (3 + 4 t )
>
> In[6]:= Simplify[%]
>
>             3      5
>         1. t  + 2 t
> Out[6]= ------------
>            2      4
>         3 t  + 4 t
>
>
> How can I make mathematica calculating
>
> In[11]:= Simplify[Numerator[Out[6]]/t^2] /
Simplify[Denominator[Out[6]]/t^2]
>
>                    3
>          1. t + 2 t
> Out[11]= -----------
>                  2
>           3 + 4 t
>
>
> Hans Friedrich Steffani
> --
> Hans Friedrich Steffani
> Institut fuer Elektrische Maschinen und Antriebe
> TU Chemnitz-Zwickau
> e-mail: hans.steffani at e-technik.tu-chemnitz.de
>

You might try something like this:

In[4]:= Together[Rationalize[(1.  t^3 + 2 t^5) / ( t^2 ( 3 + 4 t^2)
)]]//InputForm

Out[4]//InputForm= (t*(1 + 2*t^2))/(3 + 4*t^2)

In general, the presence of inexact numbers will confound Simplify,
Together, et al.

Daniel Lichtblau
Wolfram Research
danl at wri.com

```

• Prev by Date: Mma & Win95
• Next by Date: Q on COMBINING PLOTS w/ diff. axes.
• Previous by thread: Mma & Win95
• Next by thread: Q on COMBINING PLOTS w/ diff. axes.