Re: Series problem
- To: mathgroup at smc.vnet.net
- Subject: [mg4116] Re: Series problem
- From: withoff (David Withoff)
- Date: Wed, 5 Jun 1996 01:38:00 -0400
- Organization: Wolfram Research, Inc.
- Sender: owner-wri-mathgroup at wolfram.com
In article <4ojdna$5i8 at dragonfly.wolfram.com> f85-tno at telesto.nada.kth.se (Tommy Nordgren) writes: > > I want to expand the Cosine only in the expression: > Cos[b x] Exp[-x^2]/(k^2+x^2) into a taylor series around 0. > Computing the series in terms of x don't work, because the exponetial and > the divisor will be expanded as well, when the series of the Cosine is > multiplied by the other factors. > Making the series expansion in terms of b don't work, because Mathematica > can't integrate the resulting series expansion in terms of x. > Are there any way to handle this except by introducing a new representation > for function series. > (The problem I'm currently interested in is finding a series for the function > f[b_,k_] = Integrate[Cos[b x] Exp[-x^2]/(k^2+x^2),{x,-Infinity,Infinity}], > which is valid for small b) > -- > ------------------------------------------------------------------------- > Tommy Nordgren "Home is not where you are born, > Royal Institute of Technology but where your heart finds peace." > Stockholm Tommy Nordgren - The dying old crone > f85-tno at nada.kth.se > -------------------------------------------------------------------------- > =============================================== Will something like this work? In[7]:= integrand = Expand[Normal[ Series[Cos[b x] Exp[-x^2]/(k^2+x^2), {b, 0, 4}] ] ] 2 2 4 4 1 b x b x Out[7]= ------------- - --------------- + ---------------- 2 2 2 x 2 2 x 2 2 x 2 2 E (k + x ) 2 E (k + x ) 24 E (k + x ) In[8]:= Integrate[integrand, {x, -Infinity, Infinity}] 2 2 2 k 2 -Sqrt[Pi] Sqrt[Pi] b Sqrt[Pi] b E Sqrt[k ] Pi Out[8]= --------- + -------- - ----------- + ------------------ + 4 2 2 2 2 k k 4 k 2 2 k 2 4 k 2 2 E Sqrt[k ] Pi b E k Sqrt[k ] Pi > --------------- + --------------------- - 2 24 k 2 2 k 2 3 2 3 b E Sqrt[k ] Sqrt[Pi] Gamma[-(-), 0, k ] 2 > --------------------------------------------- - 8 2 k 2 3 2 3 E Sqrt[k ] Sqrt[Pi] Gamma[-(-), 0, k ] 2 > ------------------------------------------ - 2 4 k 2 4 k 2 2 3 2 b E k Sqrt[k ] Sqrt[Pi] Gamma[-(-), 0, k ] 2 > ---------------------------------------------- 32 Dave Withoff Research and Development Wolfram Research ==== [MESSAGE SEPARATOR] ====