MathGroup Archive 1997

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Locating text in Show

  • To: mathgroup at smc.vnet.net
  • Subject: [mg8326] Re: [mg8205] Locating text in Show
  • From: hattons at CPKWEBSER5.ncr.disa.mil (Steven T. Hatton)
  • Date: Sun, 24 Aug 1997 13:24:41 -0400
  • Organization: Logicon supporting DISA
  • Sender: owner-wri-mathgroup at wolfram.com

--------------68EC8A1FF4F750A615D4533D

Sherman,

Thank you for taking the time to respond.  I have an earlier response
from someone else on this same issue.  I need to fish that out and
respond to it as well.

What I finally came up with worked just by combining the graphs
together.  I still don't understand what was going on.  When I plotted
just the text it came out wierd.  When I combined it with the rest of
the graphic it did just what you said.  I got the text placed
considently with the points.  I did some manipulation to get what I
wanted.  This is what I ended up with:

labels1=RotateRight[Thread[A^-Range[-7,0]],2];
labels2=RotateRight[Thread[-Range[-7,0]],2];

displace=1/5 Thread[{Cos[(\[Pi]/4) Range[0,7]],Sin[(\[Pi]/4)
Range[0,7]]}];

<< Geometry`Polytopes`

dots=Vertices[Octagon];

group1=Graphics[
  {
   {PointSize[.03], Point /@ dots},{Circle[{0,0},1]},
    {Thread[
     Text[
      labels1,dots[[Thread[Range[8] ]]] + displace[[Thread[Range[8] ]]]
      ]
     ]
    }
   },
        AspectRatio -> 1,DisplayFunction->Identity];

group2=Graphics[
  {
   {PointSize[.03], Point /@ dots},{Circle[{0,0},1]},
    {Thread[
     Text[
      labels2,dots[[Thread[Range[8] ]]] + displace[[Thread[Range[8] ]]]
      ]
     ]
    }
   },
        AspectRatio -> 1, DisplayFunction->Identity];

Show[GraphicsArray[{group1,group2}]]

I don't know what happens to attachements in news groups.  I don't even
know if this will get to the news group.  I'm new at all of this.
Nonetheless, I attached the .nb of what I was trying to do. One thing I
wold like to have been able to do is thread accross three lists.  I'm
just learning so I'm not sure how to describe that any better.

Thanks again,

Steve

Sherman.Reed wrote:

> STEVE, SEE NOTE BELOW.
> SURE, THE POINTS ARE THE LOCATION ON THE UNIT CIRCLE WHERE THE
> VERTICES OF THE OCTAGON ARE LOCATED.  THE POINTS BEGIN IN MID
> FIRST QUAD AND ROTATE COUNTER CLOCKWISE AND ENDUP AT THE
> BEGINNING OF THE FIRST QUAD.  PLOT YOUR POINTS MANUALLY AND
> YOU WILL SEE THEY DO JUST WHAT YOU WANT, ALMOST.
>
> THE VERTICES OF THE OCTAGON AND THE TEXT OCCUPY THE SAME SPACE
> AND THE VERTICES OF THE OCTAGON OVERLAY THE TEXT FOR THE POINTS.
>
> SOLUTION IS TO EITHER SHRINK OR EXPAND THE CIRCLE THAT CONTAINS
> THE TEXT DATA.  EASY TO DO WITH TRIG.  IF YOU HAVE A PROBLEM,SEND
> ME A NOTE.
>
> Sherman C. Reed
> sherman.reed at worldnet.att.net
>



--------------68EC8A1FF4F750A615D4533D

(***********************************************************************

                    Mathematica-Compatible Notebook

This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the notebook 
starts with the line of stars above.

To get the notebook into a Mathematica-compatible application, do one of 
the following:

* Save the data starting with the line of stars above into a file
  with a name ending in .nb, then open the file inside the application;

* Copy the data starting with the line of stars above to the
  clipboard, then use the Paste menu command inside the application.

Data for notebooks contains only printable 7-bit ASCII and can be
sent directly in email or through ftp in text mode.  Newlines can be
CR, LF or CRLF (Unix, Macintosh or MS-DOS style).

NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the 
word CacheID, otherwise Mathematica-compatible applications may try to 
use invalid cache data.

For more information on notebooks and Mathematica-compatible 
applications, contact Wolfram Research:
  web: http://www.wolfram.com
  email: info at wolfram.com
  phone: +1-217-398-0700 (U.S.)

Notebook reader applications are available free of charge from 
Wolfram Research.
***********************************************************************)

(*CacheID: 232*)


(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[     31388,        760]*)
(*NotebookOutlinePosition[     32101,        785]*)
(*  CellTagsIndexPosition[     32057,        781]*)
(*WindowFrame->Normal*)



Notebook[{
Cell[TextData[{
  StyleBox["Theorem:",
    FontWeight->"Bold"],
  " If G is a cyclic group of order n, then G is isomorphic to ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`\[DoubleStruckCapitalZ]\_n\)]]],
  ".\n\n",
  StyleBox["Proof:",
    FontWeight->"Bold"],
  " Let G be a cyclic group of order n generated by ",
  StyleBox["a",
    FontWeight->"Bold"],
  " and define a map \[Phi] : ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`\[DoubleStruckCapitalZ]\_n\)]]],
  "\[Rule]G by \[Phi] : k \[Rule] ",
  StyleBox[Cell[BoxData[
      FormBox[
        SuperscriptBox[
          StyleBox["a",
            FontWeight->"Bold"], "k"], TraditionalForm]]]],
  " where 0 \[LessEqual] k < n.  \nTo show that \[Phi] is onto we must show \
that \[Phi](k) = \[Phi](h) \[Implies] k = h.  Assume to the contrary, that k \
\[NotEqual] h but ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^k = \ \(a\^h.\)\)]]],
  "  Without loss of generality we say that h > k.  This gives ",
  StyleBox[Cell[BoxData[
      FormBox[
        RowBox[{
          FormBox[\(a\^k\),
            "TraditionalForm"], \(a\^\(-k\)\)}], TraditionalForm]]]],
  "= ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^0\)]]],
  "= e = ",
  StyleBox[Cell[BoxData[
      FormBox[
        RowBox[{
          FormBox[\(a\^h\),
            "TraditionalForm"], \(a\^\(-k\)\)}], TraditionalForm]]]],
  "= ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^\(h - k\)\)]]],
  " where 0 < h - k < n.  Let m = h - k and find q and r such that\n\n\ti = \
mq + r \tfor   0 \[LessEqual] r < m\n\t\nby the division algorithm.  Then \n\n\
\t",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^i\)]]],
  "= ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^\(mq\  + \ r\)\)]]],
  " = ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`\(\((a\^m)\)\^q\) a\^r\)]]],
  "= ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`\(\(e\^q\) a\^r\ \)\)]]],
  "= ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^r\)]]],
  "\n\t\nfor 0 \[LessEqual] r < m.  This means that there are only m < n \
elements in the group contradicting the assertion that the group is of order \
n.  We have shown that \[Phi] is 1\[Dash]1.  \nTo show that the mapping is \
onto we need to show that \n\n\t\[ForAll] ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^k\)]]],
  "\[Exists] k \[Element] ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`\[DoubleStruckCapitalZ]\_n\)]]],
  "\[SuchThat] ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`\(\[Phi]\^\(-1\)\)(a\^k)\)]]],
  " = k.  \n\nThis follows from that fact that the generation of the ",
  StyleBox[Cell[BoxData[
      FormBox[
        SuperscriptBox[
          StyleBox["a",
            FontWeight->"Bold"], \(k\ \)], TraditionalForm]]]],
  "produces exponents sequentially in unitary increments beginning with k=1.  \
We thus see that there are n-1 ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^k\)]]],
  "\[NotEqual] e with 1\[LessEqual]k<n, and one ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`a\^k\)]]],
  "= e, namely ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`\(a\^0.\)\)]]],
  "  \nIt has been shown that the mapping is one-to-one and onto.  In order \
to show \[Phi] is a homomorphisim we need to show that \[Phi](i ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`+\_n\)]]],
  " j) = ",
  StyleBox[Cell[BoxData[
      FormBox[
        SuperscriptBox[
          StyleBox["a",
            FontWeight->"Bold"], 
          RowBox[{"(", 
            RowBox[{"i", " ", 
              FormBox[\(+\_n\),
                "TraditionalForm"], " ", "j"}], ")"}]], TraditionalForm]]]],
  "=",
  StyleBox[Cell[BoxData[
      FormBox[
        SuperscriptBox[
          StyleBox["a",
            FontWeight->"Bold"], \(i\ \)], TraditionalForm]]]],
  StyleBox[Cell[BoxData[
      FormBox[
        RowBox[{
          RowBox[{
            SuperscriptBox[
              StyleBox["a",
                FontWeight->"Bold"], \(j\ \)], "=", " ", 
            RowBox[{\(\[Phi](i\ )\), 
              FormBox[\(\[Phi](\),
                "TraditionalForm"], " ", "j"}]}], ")"}], TraditionalForm]]]],
  ".  Decomposing this equivalence:  \[Phi](i ",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`+\_n\)]]],
  " j) = ",
  StyleBox[Cell[BoxData[
      FormBox[
        SuperscriptBox[
          StyleBox["a",
            FontWeight->"Bold"], 
          RowBox[{"(", 
            RowBox[{"i", " ", 
              FormBox[\(+\_n\),
                "TraditionalForm"], " ", "j"}], ")"}]], TraditionalForm]]]],
  "is by the definition of \[Phi].   ",
  StyleBox[Cell[BoxData[
      FormBox[
        SuperscriptBox[
          StyleBox["a",
            FontWeight->"Bold"], 
          RowBox[{"(", 
            RowBox[{"i", " ", 
              FormBox[\(+\_n\),
                "TraditionalForm"], " ", "j"}], ")"}]], TraditionalForm]]]],
  "=",
  StyleBox[Cell[BoxData[
      FormBox[
        SuperscriptBox[
          StyleBox["a",
            FontWeight->"Bold"], \(i\ \)], TraditionalForm]]]],
  StyleBox[Cell[BoxData[
      FormBox[
        RowBox[{
          SuperscriptBox[
            StyleBox["a",
              FontWeight->"Bold"], \(j\ \)], 
          FormBox["",
            "TraditionalForm"]}], TraditionalForm]]]],
  "follows from the laws of exponents discussed on page 64 of the text, and \
from the 1\[Dash]1 and onto mapping of property \[Phi]:",
  StyleBox[Cell[BoxData[
      \(TraditionalForm\`\[DoubleStruckCapitalZ]\_n\)]]],
  "\[Rule] G.   ",
  StyleBox[Cell[BoxData[
      FormBox[
        SuperscriptBox[
          StyleBox["a",
            FontWeight->"Bold"], \(i\ \)], TraditionalForm]]]],
  StyleBox[Cell[BoxData[
      FormBox[
        RowBox[{
          RowBox[{
            SuperscriptBox[
              StyleBox["a",
                FontWeight->"Bold"], \(j\ \)], "=", " ", 
            RowBox[{\(\[Phi](i\ )\), 
              FormBox[\(\[Phi](\),
                "TraditionalForm"], " ", "j"}]}], ")"}], TraditionalForm]]]],
  " follows from the definition of \[Phi].\n\nSee the graphical output \
below:"
}], "Text"],

Cell[CellGroupData[{

Cell[BoxData[{
    \(labels1 = RotateRight[Thread[A^\(-Range[\(-7\), 0]\)], 2]; \n
    labels2 = RotateRight[Thread[\(-Range[\(-7\), 0]\)], 2]; \n\n
    displace = 
      1/5\ Thread[{Cos[\((\[Pi]/4)\)\ Range[0, 7]], 
            Sin[\((\[Pi]/4)\)\ Range[0, 7]]}]; \n\n<< \ Geometry`Polytopes`\n
    \), 
    \(dots = Vertices[Octagon]; \n\n
    group1 = Graphics[\n
        \t\t{\n\t\t\t{PointSize[.03], \ Point\ /@\ dots}, {
            Circle[{0, 0}, 1]}, \n
          \t\t\t\t{
            Thread[\n\t\t\t\t\t
              Text[\n\t\t\t\t\t\tlabels1, 
                dots[\([Thread[Range[8]\ ]]\)]\  + \t
                  displace[\([Thread[Range[8]\ ]]\)]\n\t\t\t\t\t\t]\n
              \t\t\t\t\t]\n\t\t\t\t}\n\t\t\t}, \n\ \ \ \ \ \ \ \ 
        AspectRatio\  -> \ 1, DisplayFunction -> Identity]; \n\n
    group2 = Graphics[\n
        \t\t{\n\t\t\t{PointSize[.03], \ Point\ /@\ dots}, {
            Circle[{0, 0}, 1]}, \n
          \t\t\t\t{
            Thread[\n\t\t\t\t\t
              Text[\n\t\t\t\t\t\tlabels2, 
                dots[\([Thread[Range[8]\ ]]\)]\  + \t
                  displace[\([Thread[Range[8]\ ]]\)]\n\t\t\t\t\t\t]\n
              \t\t\t\t\t]\n\t\t\t\t}\n\t\t\t}, \n\ \ \ \ \ \ \ \ 
        AspectRatio\  -> \ 1, \ DisplayFunction -> Identity]; \n\n
    Show[GraphicsArray[{group1, group2}]]\)}], "Input"],

Cell[GraphicsData["PostScript", "\<\
%!
%%Creator: Mathematica
%%AspectRatio: .47619 
MathPictureStart
/Mabs {
Mgmatrix idtransform
Mtmatrix dtransform
} bind def
/Mabsadd { Mabs
3 -1 roll add
3 1 roll add
exch } bind def
%% Graphics
/Courier findfont 10  scalefont  setfont
% Scaling calculations
0.0238095 0.47619 0.0113379 0.47619 [
[ 0 0 0 0 ]
[ 1 .47619 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 .47619 L
0 .47619 L
closepath
clip
newpath
% Start of sub-graphic
p
0.0238095 0.0113379 0.477324 0.464853 MathSubStart
%% Graphics
/Courier findfont 10  scalefont  setfont
% Scaling calculations
0.5 0.417191 0.5 0.417191 [
[ 0 0 0 0 ]
[ 1 1 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1 L
0 1 L
closepath
clip
newpath
0 g
.03 w
.795 .795 Mdot
.5 .91719 Mdot
.205 .795 Mdot
.08281 .5 Mdot
.205 .205 Mdot
.5 .08281 Mdot
.795 .205 Mdot
.91719 .5 Mdot
.5 Mabswid
newpath
.5 .5 .41719 0 365.73 arc
s
gsave
.87844 .795 -66.5 -11.5 Mabsadd m
1 1 Mabs scale
currentpoint translate
0 23 translate 1 -1 scale
63.187500 14.750000 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10.000000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(A) show
1.000000 setlinewidth
%%DocumentNeededResources: font Courier
%%DocumentSuppliedResources:
%%DocumentNeededFonts: Courier
%%DocumentSuppliedFonts:
%%DocumentFonts: font Courier
grestore
[(1)] .559 .97619 0 0 Mshowa
gsave
.205 .87844 -69 -11.5 Mabsadd m
1 1 Mabs scale
currentpoint translate
0 23 translate 1 -1 scale
63.187500 14.750000 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10.000000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(A) show
69.375000 10.812500 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 7.125000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(7) show
1.000000 setlinewidth
%%DocumentNeededResources: font Courier
%%DocumentSuppliedResources:
%%DocumentNeededFonts: Courier
%%DocumentSuppliedFonts:
%%DocumentFonts: font Courier
grestore
gsave
.02381 .559 -69 -11.5 Mabsadd m
1 1 Mabs scale
currentpoint translate
0 23 translate 1 -1 scale
63.187500 14.750000 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10.000000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(A) show
69.375000 10.812500 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 7.125000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(6) show
1.000000 setlinewidth
%%DocumentNeededResources: font Courier
%%DocumentSuppliedResources:
%%DocumentNeededFonts: Courier
%%DocumentSuppliedFonts:
%%DocumentFonts: font Courier
grestore
gsave
.12156 .205 -69 -11.5 Mabsadd m
1 1 Mabs scale
currentpoint translate
0 23 translate 1 -1 scale
63.187500 14.750000 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10.000000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(A) show
69.375000 10.812500 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 7.125000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(5) show
1.000000 setlinewidth
%%DocumentNeededResources: font Courier
%%DocumentSuppliedResources:
%%DocumentNeededFonts: Courier
%%DocumentSuppliedFonts:
%%DocumentFonts: font Courier
grestore
gsave
.441 .02381 -69 -11.5 Mabsadd m
1 1 Mabs scale
currentpoint translate
0 23 translate 1 -1 scale
63.187500 14.750000 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10.000000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(A) show
69.375000 10.812500 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 7.125000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(4) show
1.000000 setlinewidth
%%DocumentNeededResources: font Courier
%%DocumentSuppliedResources:
%%DocumentNeededFonts: Courier
%%DocumentSuppliedFonts:
%%DocumentFonts: font Courier
grestore
gsave
.795 .12156 -69 -11.5 Mabsadd m
1 1 Mabs scale
currentpoint translate
0 23 translate 1 -1 scale
63.187500 14.750000 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10.000000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(A) show
69.375000 10.812500 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 7.125000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(3) show
1.000000 setlinewidth
%%DocumentNeededResources: font Courier
%%DocumentSuppliedResources:
%%DocumentNeededFonts: Courier
%%DocumentSuppliedFonts:
%%DocumentFonts: font Courier
grestore
gsave
.97619 .441 -69 -11.5 Mabsadd m
1 1 Mabs scale
currentpoint translate
0 23 translate 1 -1 scale
63.187500 14.750000 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 10.000000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(A) show
69.375000 10.812500 moveto
%%IncludeResource: font Courier
%%IncludeFont: Courier
/Courier findfont 7.125000 scalefont
[1 0 0 -1 0 0 ] makefont setfont
0.000000 0.000000 0.000000 setrgbcolor
(2) show
1.000000 setlinewidth
%%DocumentNeededResources: font Courier
%%DocumentSuppliedResources:
%%DocumentNeededFonts: Courier
%%DocumentSuppliedFonts:
%%DocumentFonts: font Courier
grestore
MathSubEnd
P
% End of sub-graphic
% Start of sub-graphic
p
0.522676 0.0113379 0.97619 0.464853 MathSubStart
%% Graphics
/Courier findfont 10  scalefont  setfont
% Scaling calculations
0.5 0.417191 0.5 0.417191 [
[ 0 0 0 0 ]
[ 1 1 0 0 ]
] MathScale
% Start of Graphics
1 setlinecap
1 setlinejoin
newpath
0 0 m
1 0 L
1 1 L
0 1 L
closepath
clip
newpath
0 g
.03 w
.795 .795 Mdot
.5 .91719 Mdot
.205 .795 Mdot
.08281 .5 Mdot
.205 .205 Mdot
.5 .08281 Mdot
.795 .205 Mdot
.91719 .5 Mdot
.5 Mabswid
newpath
.5 .5 .41719 0 365.73 arc
s
[(1)] .87844 .795 0 0 Mshowa
[(0)] .559 .97619 0 0 Mshowa
[(7)] .205 .87844 0 0 Mshowa
[(6)] .02381 .559 0 0 Mshowa
[(5)] .12156 .205 0 0 Mshowa
[(4)] .441 .02381 0 0 Mshowa
[(3)] .795 .12156 0 0 Mshowa
[(2)] .97619 .441 0 0 Mshowa
MathSubEnd
P
% End of sub-graphic
% End of Graphics
MathPictureEnd
\
\>"], "Graphics",
  ImageSize->{386, 183.75},
  ImageMargins->{{43, 0}, {0, 14.3125}},
  ImageRegion->{{0, 1}, {0, 1}},
  ImageCache->GraphicsData["Bitmap", "\<\
CF5dJ6E]HGAYHf4PAg9QL6QYHg<PAVmbKF5d0`4000620000]aP00`40o`000?l0003ooooooh?oool0
0?oooon3oooo003oooooPoooo`00oooooh?oool00?oooon3oooo003oooooPoooo`00D?ooo`800000
0oooo`0000000030oooo0`0006[oool0053oool01 at 000?ooooooooooo`000031oooo00<0003ooooo
ool0JOooo`00DOooo`<00030oooo100006[oool0057oool00`000?ooo`000030oooo00<0003oool0
0000Joooo`00D_ooo`030000oooooooo00?oool20000^oooo`80001[oooo001Aoooo0P0000Coool3
0000_?ooo`030000oooooooo06Woool005Ooool00`000?ooo`00003ooooo:Oooo`00F?ooo`030000
oooooooo0?oooolXoooo001Hoooo00<0003oooooool0ooooobSoool00?oooon3oooo003oooooPooo
o`00oooooh?oool005ooool20000__ooo`80001Qoooo001Eoooo5`000:WooolG0000E_ooo`00D?oo
o`D00009oooo100000[oool50000Woooo`D00009oooo100000[oool50000DOooo`00COooo`<0000?
oooo0P00013oool40000Uoooo` at 0000?oooo0P00013oool30000C_ooo`00BOooo`@0000Xoooo0`00
097oool30000:?ooo` at 0001:oooo0017oooo0P0002ooool200005?ooo`8000000oooo`000000001d
oooo0P0002ooool200006?ooo`80000^oooo0014oooo0`0003?oool300004Oooo`050000oooooooo
oooo0000077oool30000<oooo`<0000Goooo00<0003oooooool0:oooo`00 at _ooo`80000ioooo0P00
013oool30000L?ooo`80000ioooo0P0001Coool00`000?ooooooo`0/oooo0011oooo00<0003ooooo
ool0>oooo`80000>oooo00<0003oool00000K_ooo`80000moooo00<0003oooooool04_ooo`030000
oooooooo02_oool003koool30000 at ?ooo`<0000<oooo00<0003oooooool00_ooo`<0001Uoooo0`00
043oool300003oooo`030000oooo000002goool003coool20000A_ooo`800009oooo0P0000Koool0
0`000?ooooooo`1Qoooo0P0004Koool200003_ooo`030000oooooooo02coool003[oool20000B_oo
o`030000oooooooo00goool00`000?ooooooo`1Qoooo00<0003oooooool0B?ooo`80000koooo000i
oooo00<0003oooooool0Boooo`80000>oooo00<0003oooooool0G_ooo`80001=oooo00<0003ooooo
ool0>?ooo`00=oooo`80001 at oooo0P0000[oool30000G_ooo`80001@oooo0P0003Soool003Koool0
0`000?ooooooo`1Boooo00<0003oooooool0Ioooo`030000oooooooo05;oool00`000?ooooooo`0e
oooo000doooo0P0005Koool20000IOooo`80001Foooo0P0003Goool003?oool00`000?ooooooo`1H
oooo00<0003oooooool0HOooo`030000oooooooo05Soool00`000?ooooooo`0boooo000boooo00<0
003oooooool0F_ooo`030000oooooooo05ooool00`000?ooooooo`1Joooo00<0003oooooool0<Ooo
o`00<Oooo`030000oooooooo05_oool00`000?ooooooo`1Ooooo00<0003oooooool0Foooo`030000
oooooooo033oool0033oool00`000?ooooooo`1Moooo00<0003oooooool0GOooo`030000oooooooo
05goool00`000?ooooooo`0_oooo000Ioooo0P000003oooo00000000017oool00`000?ooooooo`1O
oooo0P0004[oool00`000?ooooooo`0>oooo0P00067oool00`000?ooooooo`0^oooo000Ioooo00D0
003oooooooooool000003_ooo`<0001Toooo0P0004Ooool00`000?ooo`00000<oooo0`0006Coool2
0000;_ooo`006_ooo`<0000>oooo100006?oool40000B?ooo`030000oooooooo00Woool40000Hooo
o` at 0000]oooo000Joooo00<0003oool000003_ooo` at 0001Soooo100004Koool200003?ooo`@0001S
oooo100002goool001_oool00`000?ooooooo`02oooo0`0000Soool30000IOooo`<00016oooo00<0
003oooooool02oooo`<0001Uoooo0P000003oooo0000oooo02_oool001[oool200001_ooo`030000
oooooooo00Goool00`000?ooooooo`1Yoooo00<0003oooooool0 at oooo`<0000:oooo00<0003ooooo
ool0J_ooo`030000oooooooo02Woool002;oool00`000?ooooooo`04oooo00<0003oooooool0Jooo
o`030000oooooooo04koool00`000?ooooooo`1/oooo00<0003oooooool0:?ooo`008?ooo`800006
oooo00<0003oooooool0KOooo`030000oooooooo04coool00`000?ooooooo`1^oooo00<0003ooooo
ool09oooo`008?ooo`<00004oooo00<0003oooooool0Koooo`030000oooooooo04_oool00`000?oo
ooooo`1_oooo00<0003oooooool09_ooo`009_ooo`030000oooooooo077oool00`000?ooooooo`19
oooo00<0003oooooool0LOooo`030000oooooooo02Goool002Goool00`000?ooooooo`1coooo00<0
003oooooool0Aoooo`030000oooooooo07?oool00`000?ooooooo`0Toooo000Uoooo00<0003ooooo
ool0Loooo`030000oooooooo04Ooool00`000?ooooooo`1coooo00<0003oooooool09?ooo`009?oo
o`030000oooooooo07Goool00`000?ooooooo`15oooo00<0003oooooool0MOooo`030000oooooooo
02?oool002?oool00`000?ooooooo`1foooo00<0003oooooool0A?ooo`030000oooooooo07Koool0
0`000?ooooooo`0Soooo000Soooo00<0003oooooool0Moooo`030000oooooooo04?oool00`000?oo
ooooo`1goooo00<0003oooooool08_ooo`008_ooo`030000oooooooo07Woool00`000?ooooooo`11
oooo00<0003oooooool0NOooo`030000oooooooo027oool0027oool00`000?ooooooo`1joooo00<0
003oooooool0 at ?ooo`030000oooooooo07[oool00`000?ooooooo`0Qoooo000Qoooo00<0003ooooo
ool0Noooo`030000oooooooo03ooool00`000?ooooooo`1koooo00<0003oooooool08?ooo`008Ooo
o`030000oooooooo07coool00`000?ooooooo`0moooo00<0003oooooool0OOooo`030000oooooooo
01ooool0023oool00`000?ooooooo`1moooo00<0003oooooool0??ooo`030000oooooooo07koool0
0`000?ooooooo`0Ooooo000Poooo00<0003oooooool0O_ooo`030000oooooooo03_oool00`000?oo
ooooo`1noooo00<0003oooooool07oooo`007oooo`030000oooooooo07ooool00`000?ooooooo`0j
oooo00<0003oooooool0Ooooo`030000oooooooo01ooool001ooool00`000?ooooooo`20oooo00<0
003oooooool0>Oooo`030000oooooooo083oool00`000?ooooooo`0Noooo000Noooo00<0003ooooo
ool0POooo`030000oooooooo03Woool00`000?ooooooo`21oooo00<0003oooooool07Oooo`007Ooo
o`030000oooooooo08;oool00`000?ooooooo`0hoooo00<0003oooooool0P_ooo`030000oooooooo
01goool001goool00`000?ooooooo`23oooo00<0003oooooool0=oooo`030000oooooooo08?oool0
0`000?ooooooo`0Loooo000Moooo00<0003oooooool0Poooo`030000oooooooo03Koool00`000?oo
ooooo`24oooo00<0003oooooool07?ooo`007Oooo`030000oooooooo08Coool00`000?ooooooo`0e
oooo00<0003oooooool0Q?ooo`030000oooooooo01coool001coool00`000?ooooooo`25oooo00<0
003oooooool0=?ooo`030000oooooooo08Koool00`000?ooooooo`0Koooo000Koooo00<0003ooooo
ool0Q_ooo`030000oooooooo03Coool00`000?ooooooo`26oooo00<0003oooooool06oooo`006ooo
o`030000oooooooo08Ooool00`000?ooooooo`0coooo00<0003oooooool0Qoooo`030000oooooooo
01[oool001_oool00`000?ooooooo`27oooo00<0003oooooool0<_ooo`030000oooooooo08Soool0
0`000?ooooooo`0Joooo000Koooo00<0003oooooool0R?ooo`030000oooooooo037oool00`000?oo
ooooo`28oooo00<0003oooooool06_ooo`006_ooo`030000oooooooo08Woool00`000?ooooooo`0a
oooo00<0003oooooool0R?ooo`030000oooooooo01[oool001[oool00`000?ooooooo`29oooo00<0
003oooooool0<?ooo`030000oooooooo08[oool00`000?ooooooo`0Ioooo000Joooo00<0003ooooo
ool0R_ooo`030000oooooooo02ooool00`000?ooooooo`2:oooo00<0003oooooool06Oooo`006Ooo
o`030000oooooooo08_oool00`000?ooooooo`0_oooo00<0003oooooool0R_ooo`030000oooooooo
01Woool001Woool00`000?ooooooo`2;oooo00<0003oooooool0;oooo`030000oooooooo08_oool0
0`000?ooooooo`0Hoooo000Ioooo00<0003oooooool0Roooo`030000oooooooo02ooool00`000?oo
ooooo`2;oooo00<0003oooooool06?ooo`006Oooo`030000oooooooo08_oool00`000?ooooooo`0_
oooo00<0003oooooool0Roooo`030000oooooooo01Soool001Woool00`000?ooooooo`2;oooo00<0
003oooooool0;_ooo`030000oooooooo08coool00`000?ooooooo`0Hoooo000Ioooo00<0003ooooo
ool0S?ooo`030000oooooooo00;oool2000000?oool0000000009_ooo`030000oooooooo08coool0
0`000?ooooooo`07oooo0`0000koool001Soool00`000?ooooooo`2=oooo00<0003oooooool00_oo
o`050000oooooooooooo000002Koool00`000?ooooooo`2=oooo00<0003oooooool01_ooo`030000
oooooooo00koool001Soool00`000?ooooooo`2=oooo00<0003oooooool00oooo`<0000Woooo00<0
003oooooool0SOooo`030000oooooooo00Ooool00`000?ooooooo`0=oooo000Hoooo00<0003ooooo
ool0SOooo`030000oooooooo00?oool00`000?ooo`00000Woooo00<0003oooooool0SOooo`030000
oooooooo00Ooool00`000?ooooooo`0=oooo000Hoooo00<0003oooooool0SOooo`030000oooooooo
00Coool00`000?ooooooo`02oooo0`00023oool00`000?ooooooo`2>oooo00<0003oooooool01_oo
o`030000oooo000000koool001Soool00`000?ooooooo`2=oooo00<0003oooooool00oooo`800004
oooo0P00027oool00`000?ooooooo`2>oooo00<0003oooooool01oooo`030000oooooooo00goool0
01Soool00`000?ooooooo`2=oooo00<0003oooooool02oooo`030000oooooooo01koool00`000?oo
ooooo`2>oooo00<0003oooooool05oooo`006?ooo`030000oooooooo08koool00`000?ooooooo`0:
oooo00<0003oooooool07_ooo`030000oooooooo08koool00`000?ooooooo`0Goooo000Hoooo00<0
003oooooool0S_ooo`030000oooooooo00Soool300008?ooo`030000oooooooo08koool00`000?oo
ooooo`0Goooo000Hoooo00<0003oooooool0S_ooo`030000oooooooo02_oool00`000?ooooooo`2>
oooo00<0003oooooool05oooo`006?ooo`030000oooooooo08koool00`000?ooooooo`0[oooo00<0
003oooooool0S_ooo`030000oooooooo01Ooool001Ooool20000Soooo`80000/oooo0P0008ooool2
00006Oooo`005_ooo` at 0002=oooo100002[oool40000SOooo`@0000Hoooo000Foooo100008goool4
0000:_ooo` at 0002=oooo100001Soool001Ooool20000Soooo`80000/oooo0P0008ooool200006Ooo
o`006?ooo`030000oooooooo08koool00`000?ooooooo`0[oooo00<0003oooooool0S_ooo`030000
oooooooo01Ooool001Soool00`000?ooooooo`2>oooo00<0003oooooool0:oooo`030000oooooooo
08koool00`000?ooooooo`0Goooo000Hoooo00<0003oooooool0S_ooo`030000oooooooo02_oool0
0`000?ooooooo`2>oooo00<0003oooooool05oooo`006?ooo`030000oooooooo08koool00`000?oo
ooooo`0[oooo00<0003oooooool0S_ooo`030000oooooooo01Ooool001Soool00`000?ooooooo`2=
oooo00<0003oooooool0;?ooo`030000oooooooo08koool00`000?ooooooo`0Goooo0008oooo0P00
0003oooo0000000000_oool00`000?ooooooo`2=oooo00<0003oooooool08?ooo`80000:oooo00<0
003oooooool0S_ooo`030000oooooooo01Ooool000Soool01 at 000?ooooooooooo`00000;oooo00<0
003oooooool0SOooo`030000oooooooo023oool00`000?ooo`00000:oooo00<0003oooooool0SOoo
o`030000oooooooo01Ooool000Woool300003?ooo`030000oooooooo08goool00`000?ooooooo`0P
oooo00<0003oool000002_ooo`030000oooooooo08goool00`000?ooooooo`0Goooo0009oooo00<0
003oool000003?ooo`030000oooooooo08goool00`000?ooooooo`0Poooo0P0000_oool00`000?oo
ooooo`2=oooo00<0003oooooool05oooo`002_ooo`030000oooooooo00;oool300001_ooo`030000
oooooooo08goool00`000?ooooooo`0Poooo00<0003oooooool02_ooo`030000oooooooo08coool0
0`000?ooooooo`0Hoooo0009oooo0P0000Coool00`000?ooo`000007oooo00<0003oooooool0S?oo
o`030000oooooooo027oool200002_ooo`030000oooooooo08coool00`000?ooooooo`0Hoooo000?
oooo0`0000Ooool00`000?ooooooo`2;oooo00<0003oooooool0;_ooo`030000oooooooo08coool0
0`000?ooooooo`0Hoooo000?oooo00<0003oooooool01oooo`030000oooooooo08_oool00`000?oo
ooooo`0_oooo00<0003oooooool0Roooo`030000oooooooo01Soool0013oool200001oooo`030000
oooooooo08_oool00`000?ooooooo`0_oooo00<0003oooooool0Roooo`030000oooooooo01Soool0
01Woool00`000?ooooooo`2;oooo00<0003oooooool0;oooo`030000oooooooo08[oool00`000?oo
ooooo`0Ioooo000Joooo00<0003oooooool0R_ooo`030000oooooooo02ooool00`000?ooooooo`2:
oooo00<0003oooooool06Oooo`006_ooo`030000oooooooo08Woool00`000?ooooooo`0`oooo00<0
003oooooool0R_ooo`030000oooooooo01Woool001[oool00`000?ooooooo`29oooo00<0003ooooo
ool0<Oooo`030000oooooooo08Woool00`000?ooooooo`0Ioooo000Joooo00<0003oooooool0ROoo
o`030000oooooooo037oool00`000?ooooooo`28oooo00<0003oooooool06_ooo`006oooo`030000
oooooooo08Soool00`000?ooooooo`0aoooo00<0003oooooool0R?ooo`030000oooooooo01[oool0
01_oool00`000?ooooooo`27oooo00<0003oooooool0<oooo`030000oooooooo08Ooool00`000?oo
ooooo`0Joooo000Koooo00<0003oooooool0Q_ooo`030000oooooooo03Coool00`000?ooooooo`26
oooo00<0003oooooool06oooo`007?ooo`030000oooooooo08Goool00`000?ooooooo`0doooo00<0
003oooooool0Q_ooo`030000oooooooo01_oool001coool00`000?ooooooo`25oooo00<0003ooooo
ool0=?ooo`030000oooooooo08Goool00`000?ooooooo`0Loooo000Moooo00<0003oooooool0Q?oo
o`030000oooooooo03Goool00`000?ooooooo`24oooo00<0003oooooool07?ooo`007Oooo`030000
oooooooo08?oool00`000?ooooooo`0goooo00<0003oooooool0Poooo`030000oooooooo01coool0
01goool00`000?ooooooo`22oooo00<0003oooooool0>?ooo`030000oooooooo08;oool00`000?oo
ooooo`0Moooo000Noooo00<0003oooooool0POooo`030000oooooooo03Woool00`000?ooooooo`21
oooo00<0003oooooool07Oooo`007_ooo`030000oooooooo087oool00`000?ooooooo`0ioooo00<0
003oooooool0P?ooo`030000oooooooo01koool001ooool00`000?ooooooo`20oooo00<0003ooooo
ool0>Oooo`030000oooooooo083oool00`000?ooooooo`0Noooo000Poooo00<0003oooooool0O_oo
o`030000oooooooo03_oool00`000?ooooooo`1noooo00<0003oooooool07oooo`008?ooo`030000
oooooooo07goool00`000?ooooooo`0loooo00<0003oooooool0OOooo`030000oooooooo023oool0
023oool00`000?ooooooo`1moooo00<0003oooooool0?Oooo`030000oooooooo07coool00`000?oo
ooooo`0Poooo000Qoooo00<0003oooooool0Noooo`030000oooooooo03ooool00`000?ooooooo`1k
oooo00<0003oooooool08?ooo`008Oooo`030000oooooooo07[oool00`000?ooooooo`10oooo00<0
003oooooool0N_ooo`030000oooooooo027oool002;oool00`000?ooooooo`1ioooo00<0003ooooo
ool0 at Oooo`030000oooooooo07Woool00`000?ooooooo`0Qoooo000Roooo00<0003oooooool0N?oo
o`030000oooooooo04;oool00`000?ooooooo`1hoooo00<0003oooooool08_ooo`008oooo`030000
oooooooo07Ooool00`000?ooooooo`13oooo00<0003oooooool0Moooo`030000oooooooo02;oool0
02Coool00`000?ooooooo`1eoooo00<0003oooooool0AOooo`030000oooooooo07Goool00`000?oo
ooooo`0Soooo000Uoooo00<0003oooooool0Loooo`030000oooooooo04Ooool00`000?ooooooo`1c
oooo00<0003oooooool09?ooo`009Oooo`030000oooooooo07?oool00`000?ooooooo`17oooo00<0
003oooooool0Loooo`030000oooooooo02Coool002Koool00`000?ooooooo`1aoooo00<0003ooooo
ool0BOooo`030000oooooooo077oool00`000?ooooooo`0Uoooo000Woooo00<0003oooooool0Kooo
o`030000oooooooo04_oool00`000?ooooooo`1_oooo00<0003oooooool09_ooo`00:?ooo`030000
oooooooo06koool00`000?ooooooo`1;oooo00<0003oooooool0K_ooo`030000oooooooo02Ooool0
02Woool00`000?ooooooo`1/oooo00<0003oooooool0COooo`030000oooooooo06coool00`000?oo
ooooo`0Xoooo000Zoooo00<0003oooooool0J_ooo`030000oooooooo04ooool00`000?ooooooo`1Z
oooo00<0003oooooool0:Oooo`00:_ooo`030000oooooooo06Woool00`000?ooooooo`06oooo0P00
0003oooo0000000004Goool00`000?ooooooo`1Zoooo00<0003oooooool0:Oooo`00:oooo`030000
oooooooo06Ooool00`000?ooooooo`07oooo00D0003oooooooooool00000A_ooo`030000oooooooo
06Soool00`000?ooooooo`07oooo1 at 0001koool002coool20000IOooo`80000;oooo0`0004Soool2
0000IOooo`<0000<oooo00<0003oooooool07_ooo`00:oooo` at 0001Soooo100000[oool00`000?oo
o`000017oooo100006?oool400003?ooo`030000oooooooo01koool002_oool50000H_ooo` at 0000;
oooo00<0003oooooool0A_ooo`D0001Roooo100000coool00`000?ooooooo`0Noooo000/oooo0P00
0003oooo0000oooo063oool010000?ooo`00000000_oool20000BOooo`800002oooo00<0003ooooo
ool0Goooo`<0000=oooo00<0003oooooool07_ooo`00<?ooo`030000oooooooo05goool00`000?oo
ooooo`1Moooo00<0003oooooool0GOooo`030000oooooooo00goool200008?ooo`00<Oooo`80001L
oooo00<0003oooooool0Goooo`030000oooooooo05[oool20000<_ooo`00<oooo`030000oooooooo
05Soool00`000?ooooooo`1Qoooo00<0003oooooool0F?ooo`030000oooooooo03;oool003Coool2
0000E_ooo`80001Uoooo0P0005Koool20000=Oooo`00=_ooo`030000oooooooo05;oool00`000?oo
ooooo`1Woooo00<0003oooooool0D_ooo`030000oooooooo03Goool003Ooool20000D?ooo`80001[
oooo0P00053oool20000>?ooo`00>Oooo`030000oooooooo04coool00`000?ooooooo`1]oooo00<0
003oooooool0C?ooo`030000oooooooo03Soool003[oool00`000?ooooooo`19oooo0P00077oool2
0000Boooo`030000oooooooo03Woool003_oool20000B?ooo`030000oooooooo07?oool00`000?oo
ooooo`16oooo0P0003coool002Ooool2000000?oool0000000004Oooo`800014oooo0P0006Ooool0
0`000?ooooooo`0=oooo0P0004Coool20000?_ooo`009oooo`050000oooooooooooo000001?oool0
0`000?ooooooo`0ooooo0P0006Woool00`000?ooooooo`0?oooo0P00047oool00`000?ooooooo`0n
oooo000Xoooo0`0001Goool30000>oooo`<0001[oooo00<0003oooooool04Oooo`<0000koooo0`00
047oool002Soool00`000?ooo`00000Hoooo0P0003Ooool20000Koooo`030000oooooooo01?oool2
0000=oooo`800014oooo000Yoooo00<0003oooooool00oooo`030000oooooooo01?oool30000<Ooo
o`<0001_oooo00<0003oool000005oooo`<0000aoooo0`0004Koool002Soool200001Oooo`030000
oooooooo01Koool20000;Oooo`80001boooo0`0001[oool20000;Oooo`800019oooo000`oooo00<0
003oooooool05oooo`D0000Uoooo0`0009?oool300009_ooo` at 0001;oooo000`oooo00<0003ooooo
ool07?ooo` at 0000Loooo1@0009Woool500007?ooo`D0001?oooo000^oooo0`0002;oool700001Ooo
o`800006oooo20000:?oool700001_ooo`800006oooo1`0005Coool005[oool=0000/_ooo`h0001K
oooo001Noooo10000;coool40000H?ooo`00Goooo`80002noooo0P00067oool00?oooon3oooo003o
ooooPoooo`00oooooh?oool00?oooon3oooo003oooooPoooo`00J?ooo`D0002loooo00<0003ooooo
ool0E_ooo`00J_ooo`030000oooooooo0;_oool00`000?ooo`00001Goooo001Zoooo00<0003ooooo
ool0^oooo`030000oooo000005Ooool006[oool00`000?ooooooo`2koooo00<0003oool00000Eooo
o`00J_ooo`030000oooooooo0;_oool00`000?ooo`00001Goooo001Yoooo0P000;koool00`000?oo
ooooo`1Foooo003oooooPoooo`00oooooh?oool00?oooon3oooo003oooooPoooo`00oooooh?oool0
0001\
\>"],
  ImageRangeCache->{{{83, 468}, {671.125, 488.375}} -> {-0.507538, 2.64858, 
  0.00547201, 0.00547201}, {{92.75, 266.75}, {666.75, 492.688}} -> {-2.47622, 
  5.4686, 0.0137759, 0.0137759}, {{284.188, 458.25}, {666.75, 492.688}} ->
   {-5.11204, 5.46664, 0.013771, 0.013771}}],

Cell[BoxData[
    TagBox[\(\[SkeletonIndicator]  GraphicsArray  \[SkeletonIndicator]\),
      False,
      Editable->False]], "Output"]
}, Open  ]]
},
FrontEndVersion->"Microsoft Windows 3.0",
ScreenRectangle->{{0, 800}, {0, 572}},
WindowSize->{447, 415},
WindowMargins->{{162, Automatic}, {Automatic, -2}},
PrintingCopies->1,
PrintingPageRange->{Automatic, Automatic}
]


(***********************************************************************
Cached data follows.  If you edit this Notebook file directly, not using
Mathematica, you must remove the line containing CacheID at the top of 
the file.  The cache data will then be recreated when you save this file 
from within Mathematica.
***********************************************************************)

(*CellTagsOutline
CellTagsIndex->{}
*)

(*CellTagsIndex
CellTagsIndex->{}
*)

(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 6096, 178, 622, "Text"],

Cell[CellGroupData[{
Cell[7830, 231, 1339, 28, 790, "Input"],
Cell[9172, 261, 22062, 491, 206, 6483, 294, "GraphicsData", 
"PostScript", "Graphics"],
Cell[31237, 754, 135, 3, 22, "Output"]
}, Open  ]]
}
]
*)




(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)


--------------68EC8A1FF4F750A615D4533D
Content-Description: Card for Steven T. Hatton

begin:          vcard
fn:             Steven T. Hatton
n:              ;Steven T. Hatton
email;internet: hattons at cpkwebser5.ncr.disa.mil
note:           this is a test
x-mozilla-cpt:  ;0
x-mozilla-html: FALSE
end:            vcard


--------------68EC8A1FF4F750A615D4533D--


  • Prev by Date: weird printing
  • Next by Date: HELP!! Using Solve for Simultaneous Eqns.
  • Previous by thread: Re: Locating text in Show
  • Next by thread: Need package for Lyapunov exponents