probs with InverseFourierTransform and Integrate from v2.2 to v3
- To: mathgroup@smc.vnet.net
- Subject: [mg10848] probs with InverseFourierTransform and Integrate from v2.2 to v3
- From: Alia Atlas <akatlas@cs.bu.edu>
- Date: Tue, 10 Feb 1998 21:01:59 -0500
- Organization: Boston University
I'm having a problem doing convolutions on mathematica 3.0 on an SGI, although the same code works on mathematica v2.2 on a sparc The code is (from a clean start of mathematica): In[1]:= <<Calculus`FourierTransform` In[2]:= <<Statistics`ContinuousDistributions` In[3]:= dist1 = NormalDistribution[10,3] Out[3]= NormalDistribution[10, 3] In[4]:= pdf1 = PDF[dist1, x] 1 Out[4]= --------------------------- 2 (-10 + x) /18 3 E Sqrt[2 Pi] In[5]:= trans1 = FourierTransform[pdf1, x, s] 2 10 I s - (9 s )/2 Out[5]= E In[6]:= rev1 = InverseFourierTransform[trans1, s, x] 2 10 I s - (9 s )/2 Out[6]= InverseFourierTransform[E , s, x] In[7]:= NIntegrate[rev1, {x, 0, 30}] NIntegrate::inum: 2 10. I s - 4.5 s Integrand InverseFourierTransform[2.71828 , s, 15.] is not numerical at {x} = {15}. Out[8]= NIntegrate[rev1, {x, 0, 30}] Whereas, in v2.2, I get an actual numerical answer. Can anyone help here? Thanks, Alia Atlas