probs with InverseFourierTransform and Integrate from v2.2 to v3
- To: mathgroup@smc.vnet.net
- Subject: [mg10848] probs with InverseFourierTransform and Integrate from v2.2 to v3
- From: Alia Atlas <akatlas@cs.bu.edu>
- Date: Tue, 10 Feb 1998 21:01:59 -0500
- Organization: Boston University
I'm having a problem doing convolutions on mathematica 3.0 on an SGI,
although the same code works on mathematica v2.2 on a sparc
The code is (from a clean start of mathematica):
In[1]:= <<Calculus`FourierTransform` In[2]:=
<<Statistics`ContinuousDistributions` In[3]:= dist1 =
NormalDistribution[10,3] Out[3]= NormalDistribution[10, 3]
In[4]:= pdf1 = PDF[dist1, x]
1
Out[4]= ---------------------------
2
(-10 + x) /18
3 E Sqrt[2 Pi]
In[5]:= trans1 = FourierTransform[pdf1, x, s]
2
10 I s - (9 s )/2
Out[5]= E
In[6]:= rev1 = InverseFourierTransform[trans1, s, x]
2
10 I s - (9 s )/2 Out[6]=
InverseFourierTransform[E , s, x] In[7]:=
NIntegrate[rev1, {x, 0, 30}]
NIntegrate::inum:
2
10. I s - 4.5 s
Integrand InverseFourierTransform[2.71828 , s, 15.]
is not numerical at {x} = {15}.
Out[8]= NIntegrate[rev1, {x, 0, 30}]
Whereas, in v2.2, I get an actual numerical answer.
Can anyone help here?
Thanks,
Alia Atlas