Debug program
- To: mathgroup@smc.vnet.net
- Subject: [mg10866] Debug program
- From: Chik Tai Wai David <h9505865@hkusua.hku.hk>
- Date: Wed, 11 Feb 1998 18:32:35 -0500
- Organization: HKU
Dear, I am using mathematica to write a program that solves a differential equation by finite difference method ( one of numerical methods ). I use Table[] to generate a set of linear equations and try to use Table[Solve[]] to solve for the unknowns. But an error message of something like "general::ivar:X[1],X[2],X[3] is not an valid variable" appears. I don't know what is wrong so would any one can do me a favor ? My program file is attached as "trial.nb". Just read the last cell first to see my problem. Thank you very much ! Regards, David Chik. (email:h9505865@hkusua.hku.hk)
(***********************************************************************
Mathematica-Compatible Notebook
This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the
notebook starts with the line of stars above.
To get the notebook into a Mathematica-compatible application, do one of
the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be sent
directly in email or through ftp in text mode. Newlines can be CR, LF
or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from Wolfram
Research.
***********************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 31155, 691]*)
(*NotebookOutlinePosition[ 31803, 714]*) (*
CellTagsIndexPosition[ 31759, 710]*) (*WindowFrame->Normal*)
Notebook[{
Cell[BoxData[
StyleBox[\(\
Use\ Finite\ Difference\ Method\ to\ model\ the\ heat\ conduction\
inside\ the\ \(Earth . \)\),
FontSize->18,
FontColor->RGBColor[0, 0, 1]]], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
StyleBox[
\( (*\ \(' eq'\ is\ the\ differential\ equation\ I\ want\ to\
solve
\), \n\tTemp\ is\ a\ function\ of\ space\ r\ and\ time\
\(t . \)\ *) \),
FontColor->RGBColor[0, 0, 1]], "\n",
RowBox[{"eq", "=",
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["Temp",
TagBox[\((0, 1)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}],
\(d[r, t]\)], "-",
FractionBox[
RowBox[{"2", " ",
RowBox[{
SuperscriptBox["Temp",
TagBox[\((1, 0)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}]}],
\(r + 1\)], "-",
RowBox[{
SuperscriptBox["Temp",
TagBox[\((2, 0)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}]}], "==",
\(g[r, t]\/k[r, t]\)}]}]}]], "Input"],
Cell[BoxData[
RowBox[{
RowBox[{
FractionBox[
RowBox[{
SuperscriptBox["Temp",
TagBox[\((0, 1)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}], \(d[r,
t]\)],
"-",
FractionBox[
RowBox[{"2", " ",
RowBox[{
SuperscriptBox["Temp",
TagBox[\((1, 0)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}]}], \(1 +
r\)],
"-",
RowBox[{
SuperscriptBox["Temp",
TagBox[\((2, 0)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}]}], "==",
\(g[r, t]\/k[r, t]\)}]], "Output"] }, Open ]],
Cell[BoxData[
StyleBox[
\( (*\ ' fdeq'\ transform\ ' eq'\ to\ finite\ difference\ form\ *)
\),
FontColor->RGBColor[0, 0, 1]]], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"fdeq", "=",
RowBox[{"Simplify", "[", "\n", "\t\t\t\t\t\t ",
RowBox[{"eq", "/.", " ",
RowBox[{"{", " ",
RowBox[{
\(r -> r[i]\), ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t",
\(t -> t[j]\), ",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t",
\(Temp[r, t] -> Temp[i, j]\), ",", "\n",
"\t\t\t\t\t\t\t\t\t\t\t\t\t", \(d[r, t] -> d[i, j]\), ",",
"\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t", \(g[r, t] -> g[i,
j]\),
",", "\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t",
\(k[r, t] -> k[i, j]\), ",", "\n",
"\t\t\t\t\t\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
SuperscriptBox["Temp",
TagBox[\((2, 0)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}],
"->",
\(\((Temp[i - 1, j + 1] - 2*Temp[i, j + 1] +
Temp[i + 1, j + 1] + Temp[i - 1, j] - 2*Temp[i, j]
+
Temp[i + 1, j])\)/\((2*\[Alpha]*\[Alpha])\)\)}],
",",
"\n", "\t\t\t\t\t\t\t\t\t\t\t\t\t ",
RowBox[{
RowBox[{
SuperscriptBox["Temp",
TagBox[\((1, 0)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}],
"->",
\(\((Temp[i + 1, j] + Temp[i + 1, j + 1] - Temp[i - 1,
j] -
Temp[i - 1, j + 1])\)/\((4*\[Alpha])\)\)}], ",",
"\n",
"\t\t\t\t\t\t\t\t\t\t\t\t\t",
RowBox[{
RowBox[{
SuperscriptBox["Temp",
TagBox[\((0, 1)\),
Derivative],
MultilineFunction->None], "[", \(r, t\), "]"}],
"->",
\(\((Temp[i, j + 1] - Temp[i, j])\)/\[Beta]\)}]}],
"}"}]}],
"]"}]}]], "Input"],
Cell[BoxData[
\(\(\(-Temp[i, j]\) + Temp[i, 1 + j]\)\/\(\[Beta]\ d[i, j]\) +
\(1\/\(2\ \[Alpha] + 2\ \[Alpha]\ r[i]\)\((
Temp[\(-1\) + i, j] + Temp[\(-1\) + i, 1 + j] - Temp[1 + i, j]
-
Temp[1 + i, 1 + j])\)\) -
\(1\/\(2\ \[Alpha]\^2\)\((
Temp[\(-1\) + i, j] + Temp[\(-1\) + i, 1 + j] - 2\ Temp[i, j]
-
2\ Temp[i, 1 + j] + Temp[1 + i, j] + Temp[1 + i, 1 + j])\)\)
==
g[i, j]\/k[i, j]\)], "Output"] }, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{
StyleBox[
\( (*\ This\ shows\ the\ values\ of\ the\ parameters\ in\ the\
equation\ *) \),
FontColor->RGBColor[0, 0, 1]], "\n",
\(parameters = {\nTable[g[i, j] -> 3.88*^-8, {i, 0, 6}, {j, 0,
4}], \n
Table[d[i, j] ->
Which[i > 5, 1.2*^-6, i > 3, 4.*^-6, True, 6.5*^-6], {i,
0,
6}, {j, 0, 4}], \n
Table[k[i, j] -> Which[i > 5, 4. , i > 3, 45. , True, 67. ],
{i,
0, 6}, {j, 0, 4}]} // Flatten\)}]], "Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
\(g[0, 0] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[0, 1] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[0, 2] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[0, 3] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[0, 4] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[1, 0] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[1, 1] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[1, 2] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[1, 3] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[1, 4] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[2, 0] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[2, 1] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[2, 2] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[2, 3] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[2, 4] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[3, 0] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[3, 1] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[3, 2] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[3, 3] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[3, 4] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[4, 0] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[4, 1] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[4, 2] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[4, 3] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[4, 4] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[5, 0] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[5, 1] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[5, 2] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[5, 3] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[5, 4] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[6, 0] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[6, 1] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[6, 2] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[6, 3] \[Rule] 3.87999999999999989`*^-8\), ",",
\(g[6, 4] \[Rule] 3.87999999999999989`*^-8\), ",",
\(d[0, 0] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[0, 1] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[0, 2] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[0, 3] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[0, 4] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[1, 0] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[1, 1] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[1, 2] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[1, 3] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[1, 4] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[2, 0] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[2, 1] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[2, 2] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[2, 3] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[2, 4] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[3, 0] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[3, 1] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[3, 2] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[3, 3] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[3, 4] \[Rule] 6.49999999999999911`*^-6\), ",",
\(d[4, 0] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[4, 1] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[4, 2] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[4, 3] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[4, 4] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[5, 0] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[5, 1] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[5, 2] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[5, 3] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[5, 4] \[Rule] 3.99999999999999964`*^-6\), ",",
\(d[6, 0] \[Rule] 1.19999999999999996`*^-6\), ",",
\(d[6, 1] \[Rule] 1.19999999999999996`*^-6\), ",",
\(d[6, 2] \[Rule] 1.19999999999999996`*^-6\), ",",
\(d[6, 3] \[Rule] 1.19999999999999996`*^-6\), ",",
\(d[6, 4] \[Rule] 1.19999999999999996`*^-6\), ",",
RowBox[{\(k[0, 0]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[0, 1]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[0, 2]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[0, 3]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[0, 4]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[1, 0]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[1, 1]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[1, 2]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[1, 3]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[1, 4]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[2, 0]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[2, 1]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[2, 2]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[2, 3]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[2, 4]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[3, 0]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[3, 1]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[3, 2]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[3, 3]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[3, 4]\), "\[Rule]",
StyleBox["67.0000000000000017`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[4, 0]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[4, 1]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[4, 2]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[4, 3]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[4, 4]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[5, 0]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[5, 1]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[5, 2]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[5, 3]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[5, 4]\), "\[Rule]",
StyleBox["45.`",
StyleBoxAutoDelete->True,
PrintPrecision->2]}], ",",
RowBox[{\(k[6, 0]\), "\[Rule]",
StyleBox["4.`",
StyleBoxAutoDelete->True,
PrintPrecision->1]}], ",",
RowBox[{\(k[6, 1]\), "\[Rule]",
StyleBox["4.`",
StyleBoxAutoDelete->True,
PrintPrecision->1]}], ",",
RowBox[{\(k[6, 2]\), "\[Rule]",
StyleBox["4.`",
StyleBoxAutoDelete->True,
PrintPrecision->1]}], ",",
RowBox[{\(k[6, 3]\), "\[Rule]",
StyleBox["4.`",
StyleBoxAutoDelete->True,
PrintPrecision->1]}], ",",
RowBox[{\(k[6, 4]\), "\[Rule]",
StyleBox["4.`",
StyleBoxAutoDelete->True,
PrintPrecision->1]}]}], "}"}]], "Output"] }, Open ]],
Cell[BoxData[
StyleBox[\( (*\ This\ is\ the\ space - time\ grid\ *) \),
FontColor->RGBColor[0, 0, 1]]], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(\[Alpha] = 1274200; \[Beta] = 2*^16\ ; \n
grid = Table[{r[i], t[j]} -> {i*\[Alpha], j*\[Beta]}, {i, 0, 6}, {j,
0,
4}] // Flatten\)], "Input"],
Cell[BoxData[
\({{r[0], t[0]} \[Rule] {0, 0}, {r[0], t[1]}
\[Rule] {0, 20000000000000000}, {r[0], t[2]}
\[Rule] {0, 40000000000000000}, {r[0], t[3]}
\[Rule] {0, 60000000000000000}, {r[0], t[4]}
\[Rule] {0, 80000000000000000}, {r[1], t[0]}
\[Rule] {1274200, 0}, {r[1], t[1]}
\[Rule] {1274200, 20000000000000000}, {r[1], t[2]}
\[Rule] {1274200, 40000000000000000}, {r[1], t[3]}
\[Rule] {1274200, 60000000000000000}, {r[1], t[4]}
\[Rule] {1274200, 80000000000000000}, {r[2], t[0]}
\[Rule] {2548400, 0}, {r[2], t[1]}
\[Rule] {2548400, 20000000000000000}, {r[2], t[2]}
\[Rule] {2548400, 40000000000000000}, {r[2], t[3]}
\[Rule] {2548400, 60000000000000000}, {r[2], t[4]}
\[Rule] {2548400, 80000000000000000}, {r[3], t[0]}
\[Rule] {3822600, 0}, {r[3], t[1]}
\[Rule] {3822600, 20000000000000000}, {r[3], t[2]}
\[Rule] {3822600, 40000000000000000}, {r[3], t[3]}
\[Rule] {3822600, 60000000000000000}, {r[3], t[4]}
\[Rule] {3822600, 80000000000000000}, {r[4], t[0]}
\[Rule] {5096800, 0}, {r[4], t[1]}
\[Rule] {5096800, 20000000000000000}, {r[4], t[2]}
\[Rule] {5096800, 40000000000000000}, {r[4], t[3]}
\[Rule] {5096800, 60000000000000000}, {r[4], t[4]}
\[Rule] {5096800, 80000000000000000}, {r[5], t[0]}
\[Rule] {6371000, 0}, {r[5], t[1]}
\[Rule] {6371000, 20000000000000000}, {r[5], t[2]}
\[Rule] {6371000, 40000000000000000}, {r[5], t[3]}
\[Rule] {6371000, 60000000000000000}, {r[5], t[4]}
\[Rule] {6371000, 80000000000000000}, {r[6], t[0]}
\[Rule] {7645200, 0}, {r[6], t[1]}
\[Rule] {7645200, 20000000000000000}, {r[6], t[2]}
\[Rule] {7645200, 40000000000000000}, {r[6], t[3]}
\[Rule] {7645200, 60000000000000000}, {r[6], t[4]}
\[Rule] {7645200, 80000000000000000}}\)], "Output"] }, Open ]],
Cell[BoxData[
StyleBox[
\( (*\ Now\ I\ try\ to\ generate\ the\ set\ of\ algebraic\
equations . \ I\ put\ the\ boundary\ conditions\ inside\
\(also . \)\ *) \),
FontColor->RGBColor[0, 0, 1]]], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(eqns = {
\({Table[fdeq /. {i -> a, j -> b}, {a, 1, 5}, {b, 0, 3}],
Table[Temp[i, j] - Temp[i, j - 1] == \(-40\) /. {i -> a,
j -> b}, {a, 6, 6}, {b, 1, 4}], \n
Table[Temp[i, j - 1] -
\((\((\((1 + 6*0.0400348453439142204`)\)*Temp[i,
j] -
6*0.0400348453439142204`*Temp[i + 1, j]
-
6*0.0400348453439142204`*Temp[i + 1, j -
1] -
d[i, j - 1]*g[i, j - 1]*\[Beta]/k[i, j -
1])
\)/\((1 - 6*0.0400348453439142204`)\))\)
==
0 /. {i -> a, j -> b}, {a, 0, 0}, {b, 1, 4}],
Table[Temp[i, j] == 500. /. {i -> a, j -> b}, {a, 0,
6}, {b,
0, 0}]} /. grid\) /. parameters} // Flatten\)],
"Input"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
\(7.69230769230769251`*^-12\ \((\(-Temp[1, 0]\) + Temp[1, 1])\) +
\(Temp[0, 0] + Temp[0, 1] - Temp[2, 0] -
Temp[2, 1]\)\/\(2548400 + 2548400\ r[1]\) +
\((\(-Temp[0, 0]\) - Temp[0, 1] + 2\ Temp[1, 0] + 2\ Temp[1,
1] -
Temp[2, 0] - Temp[2, 1])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[1, 1]\) + Temp[1, 2])\)
+
\(Temp[0, 1] + Temp[0, 2] - Temp[2, 1] -
Temp[2, 2]\)\/\(2548400 + 2548400\ r[1]\) +
\((\(-Temp[0, 1]\) - Temp[0, 2] + 2\ Temp[1, 1] + 2\ Temp[1,
2] -
Temp[2, 1] - Temp[2, 2])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[1, 2]\) + Temp[1, 3])\)
+
\(Temp[0, 2] + Temp[0, 3] - Temp[2, 2] -
Temp[2, 3]\)\/\(2548400 + 2548400\ r[1]\) +
\((\(-Temp[0, 2]\) - Temp[0, 3] + 2\ Temp[1, 2] + 2\ Temp[1,
3] -
Temp[2, 2] - Temp[2, 3])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[1, 3]\) + Temp[1, 4])\)
+
\(Temp[0, 3] + Temp[0, 4] - Temp[2, 3] -
Temp[2, 4]\)\/\(2548400 + 2548400\ r[1]\) +
\((\(-Temp[0, 3]\) - Temp[0, 4] + 2\ Temp[1, 3] + 2\ Temp[1,
4] -
Temp[2, 3] - Temp[2, 4])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[2, 0]\) + Temp[2, 1])\)
+
\(Temp[1, 0] + Temp[1, 1] - Temp[3, 0] -
Temp[3, 1]\)\/\(2548400 + 2548400\ r[2]\) +
\((\(-Temp[1, 0]\) - Temp[1, 1] + 2\ Temp[2, 0] + 2\ Temp[2,
1] -
Temp[3, 0] - Temp[3, 1])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[2, 1]\) + Temp[2, 2])\)
+
\(Temp[1, 1] + Temp[1, 2] - Temp[3, 1] -
Temp[3, 2]\)\/\(2548400 + 2548400\ r[2]\) +
\((\(-Temp[1, 1]\) - Temp[1, 2] + 2\ Temp[2, 1] + 2\ Temp[2,
2] -
Temp[3, 1] - Temp[3, 2])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[2, 2]\) + Temp[2, 3])\)
+
\(Temp[1, 2] + Temp[1, 3] - Temp[3, 2] -
Temp[3, 3]\)\/\(2548400 + 2548400\ r[2]\) +
\((\(-Temp[1, 2]\) - Temp[1, 3] + 2\ Temp[2, 2] + 2\ Temp[2,
3] -
Temp[3, 2] - Temp[3, 3])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[2, 3]\) + Temp[2, 4])\)
+
\(Temp[1, 3] + Temp[1, 4] - Temp[3, 3] -
Temp[3, 4]\)\/\(2548400 + 2548400\ r[2]\) +
\((\(-Temp[1, 3]\) - Temp[1, 4] + 2\ Temp[2, 3] + 2\ Temp[2,
4] -
Temp[3, 3] - Temp[3, 4])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[3, 0]\) + Temp[3, 1])\)
+
\(Temp[2, 0] + Temp[2, 1] - Temp[4, 0] -
Temp[4, 1]\)\/\(2548400 + 2548400\ r[3]\) +
\((\(-Temp[2, 0]\) - Temp[2, 1] + 2\ Temp[3, 0] + 2\ Temp[3,
1] -
Temp[4, 0] - Temp[4, 1])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[3, 1]\) + Temp[3, 2])\)
+
\(Temp[2, 1] + Temp[2, 2] - Temp[4, 1] -
Temp[4, 2]\)\/\(2548400 + 2548400\ r[3]\) +
\((\(-Temp[2, 1]\) - Temp[2, 2] + 2\ Temp[3, 1] + 2\ Temp[3,
2] -
Temp[4, 1] - Temp[4, 2])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[3, 2]\) + Temp[3, 3])\)
+
\(Temp[2, 2] + Temp[2, 3] - Temp[4, 2] -
Temp[4, 3]\)\/\(2548400 + 2548400\ r[3]\) +
\((\(-Temp[2, 2]\) - Temp[2, 3] + 2\ Temp[3, 2] + 2\ Temp[3,
3] -
Temp[4, 2] - Temp[4, 3])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(7.69230769230769251`*^-12\ \((\(-Temp[3, 3]\) + Temp[3, 4])\)
+
\(Temp[2, 3] + Temp[2, 4] - Temp[4, 3] -
Temp[4, 4]\)\/\(2548400 + 2548400\ r[3]\) +
\((\(-Temp[2, 3]\) - Temp[2, 4] + 2\ Temp[3, 3] + 2\ Temp[3,
4] -
Temp[4, 3] - Temp[4, 4])\)/3247171280000 ==
5.79104477611940193`*^-10\), ",",
\(1.25`*^-11\ \((\(-Temp[4, 0]\) + Temp[4, 1])\) +
\(Temp[3, 0] + Temp[3, 1] - Temp[5, 0] -
Temp[5, 1]\)\/\(2548400 + 2548400\ r[4]\) +
\((\(-Temp[3, 0]\) - Temp[3, 1] + 2\ Temp[4, 0] + 2\ Temp[4,
1] -
Temp[5, 0] - Temp[5, 1])\)/3247171280000 ==
8.62222222222222178`*^-10\), ",",
\(1.25`*^-11\ \((\(-Temp[4, 1]\) + Temp[4, 2])\) +
\(Temp[3, 1] + Temp[3, 2] - Temp[5, 1] -
Temp[5, 2]\)\/\(2548400 + 2548400\ r[4]\) +
\((\(-Temp[3, 1]\) - Temp[3, 2] + 2\ Temp[4, 1] + 2\ Temp[4,
2] -
Temp[5, 1] - Temp[5, 2])\)/3247171280000 ==
8.62222222222222178`*^-10\), ",",
\(1.25`*^-11\ \((\(-Temp[4, 2]\) + Temp[4, 3])\) +
\(Temp[3, 2] + Temp[3, 3] - Temp[5, 2] -
Temp[5, 3]\)\/\(2548400 + 2548400\ r[4]\) +
\((\(-Temp[3, 2]\) - Temp[3, 3] + 2\ Temp[4, 2] + 2\ Temp[4,
3] -
Temp[5, 2] - Temp[5, 3])\)/3247171280000 ==
8.62222222222222178`*^-10\), ",",
\(1.25`*^-11\ \((\(-Temp[4, 3]\) + Temp[4, 4])\) +
\(Temp[3, 3] + Temp[3, 4] - Temp[5, 3] -
Temp[5, 4]\)\/\(2548400 + 2548400\ r[4]\) +
\((\(-Temp[3, 3]\) - Temp[3, 4] + 2\ Temp[4, 3] + 2\ Temp[4,
4] -
Temp[5, 3] - Temp[5, 4])\)/3247171280000 ==
8.62222222222222178`*^-10\), ",",
\(1.25`*^-11\ \((\(-Temp[5, 0]\) + Temp[5, 1])\) +
\(Temp[4, 0] + Temp[4, 1] - Temp[6, 0] -
Temp[6, 1]\)\/\(2548400 + 2548400\ r[5]\) +
\((\(-Temp[4, 0]\) - Temp[4, 1] + 2\ Temp[5, 0] + 2\ Temp[5,
1] -
Temp[6, 0] - Temp[6, 1])\)/3247171280000 ==
8.62222222222222178`*^-10\), ",",
\(1.25`*^-11\ \((\(-Temp[5, 1]\) + Temp[5, 2])\) +
\(Temp[4, 1] + Temp[4, 2] - Temp[6, 1] -
Temp[6, 2]\)\/\(2548400 + 2548400\ r[5]\) +
\((\(-Temp[4, 1]\) - Temp[4, 2] + 2\ Temp[5, 1] + 2\ Temp[5,
2] -
Temp[6, 1] - Temp[6, 2])\)/3247171280000 ==
8.62222222222222178`*^-10\), ",",
\(1.25`*^-11\ \((\(-Temp[5, 2]\) + Temp[5, 3])\) +
\(Temp[4, 2] + Temp[4, 3] - Temp[6, 2] -
Temp[6, 3]\)\/\(2548400 + 2548400\ r[5]\) +
\((\(-Temp[4, 2]\) - Temp[4, 3] + 2\ Temp[5, 2] + 2\ Temp[5,
3] -
Temp[6, 2] - Temp[6, 3])\)/3247171280000 ==
8.62222222222222178`*^-10\), ",",
\(1.25`*^-11\ \((\(-Temp[5, 3]\) + Temp[5, 4])\) +
\(Temp[4, 3] + Temp[4, 4] - Temp[6, 3] -
Temp[6, 4]\)\/\(2548400 + 2548400\ r[5]\) +
\((\(-Temp[4, 3]\) - Temp[4, 4] + 2\ Temp[5, 3] + 2\ Temp[5,
4] -
Temp[6, 3] - Temp[6, 4])\)/3247171280000 ==
8.62222222222222178`*^-10\), ",",
\(\(-Temp[6, 0]\) + Temp[6, 1] == \(-40\)\), ",",
\(\(-Temp[6, 1]\) + Temp[6, 2] == \(-40\)\), ",",
\(\(-Temp[6, 2]\) + Temp[6, 3] == \(-40\)\), ",",
\(\(-Temp[6, 3]\) + Temp[6, 4] == \(-40\)\), ",",
\(Temp[0, 0] -
1.31615154015573643`\
\((\(-75.2835820895522278`\) +
1.24020907206348529`\ Temp[0, 1] -
0.24020907206348534`\ Temp[1, 0] -
0.24020907206348534`\ Temp[1, 1])\) == 0\), ",",
\(Temp[0, 1] -
1.31615154015573643`\
\((\(-75.2835820895522278`\) +
1.24020907206348529`\ Temp[0, 2] -
0.24020907206348534`\ Temp[1, 1] -
0.24020907206348534`\ Temp[1, 2])\) == 0\), ",",
\(Temp[0, 2] -
1.31615154015573643`\
\((\(-75.2835820895522278`\) +
1.24020907206348529`\ Temp[0, 3] -
0.24020907206348534`\ Temp[1, 2] -
0.24020907206348534`\ Temp[1, 3])\) == 0\), ",",
\(Temp[0, 3] -
1.31615154015573643`\
\((\(-75.2835820895522278`\) +
1.24020907206348529`\ Temp[0, 4] -
0.24020907206348534`\ Temp[1, 3] -
0.24020907206348534`\ Temp[1, 4])\) == 0\), ",",
RowBox[{\(Temp[0, 0]\), "==",
StyleBox["500.`",
StyleBoxAutoDelete->True,
PrintPrecision->3]}], ",",
RowBox[{\(Temp[1, 0]\), "==",
StyleBox["500.`",
StyleBoxAutoDelete->True,
PrintPrecision->3]}], ",",
RowBox[{\(Temp[2, 0]\), "==",
StyleBox["500.`",
StyleBoxAutoDelete->True,
PrintPrecision->3]}], ",",
RowBox[{\(Temp[3, 0]\), "==",
StyleBox["500.`",
StyleBoxAutoDelete->True,
PrintPrecision->3]}], ",",
RowBox[{\(Temp[4, 0]\), "==",
StyleBox["500.`",
StyleBoxAutoDelete->True,
PrintPrecision->3]}], ",",
RowBox[{\(Temp[5, 0]\), "==",
StyleBox["500.`",
StyleBoxAutoDelete->True,
PrintPrecision->3]}], ",",
RowBox[{\(Temp[6, 0]\), "==",
StyleBox["500.`",
StyleBoxAutoDelete->True,
PrintPrecision->3]}]}], "}"}]], "Output"] }, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
\(soln = Solve[eqns, Table[Temp[i, j], {i, 0, 6}, {j, 0, 4}]]\)],
"Input"],
Cell[BoxData[
StyleBox[
\(General::"ivar" \( : \ \)
"\!\({\(Temp[\(6, 0\)]\), \(Temp[\(6, 1\)]\), \(Temp[\(6,
2\)]\), \ \(Temp[\(6, 3\)]\), \(Temp[\(6, 4\)]\)}\) is not a valid
variable."\),
FontColor->RGBColor[1, 0, 0]]], "Message"] }, Open ]],
Cell[BoxData[
RowBox[{
StyleBox["(*",
FontColor->RGBColor[0, 0, 1]],
StyleBox[" ",
FontColor->RGBColor[0, 0, 1]],
StyleBox[
\(This\ is\ my\ problem . \ I\ bold\ it\ in\ red . \ What' s\
wrong\
with\ the\ above?\ I\ want\ to\ find\ the\ solutions\ and\
ListPlot3D\ them . \ I' ve\ spent\ almost\ a\ month\ and\
unfortunately\ I\ still\ can' t\ fix\ it\ out . \ Would\ you\
do\ me
\ a\ favour?\ Thank\ \(you . \)\),
FontColor->RGBColor[0, 0, 1]],
StyleBox[" ",
FontColor->RGBColor[0, 0, 1]],
StyleBox["*)",
FontColor->RGBColor[0, 0, 1]]}]], "Input"] },
FrontEndVersion->"Microsoft Windows 3.0", ScreenRectangle->{{0, 640},
{0, 452}}, WindowSize->{462, 234},
WindowMargins->{{3, Automatic}, {Automatic, 5}} ]
(***********************************************************************
Cached data follows. If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at the
top of the file. The cache data will then be recreated when you save
this file from within Mathematica.
***********************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 209, 5, 50, "Input"],
Cell[CellGroupData[{
Cell[1943, 58, 1131, 30, 125, "Input"], Cell[3077, 90, 757, 23, 83,
"Output"] }, Open ]],
Cell[3849, 116, 151, 3, 30, "Input"],
Cell[CellGroupData[{
Cell[4025, 123, 1962, 40, 333, "Input"], Cell[5990, 165, 472, 8, 188,
"Output"] }, Open ]],
Cell[CellGroupData[{
Cell[6499, 178, 547, 11, 210, "Input"], Cell[7049, 191, 9683, 212, 808,
"Output"] }, Open ]],
Cell[16747, 406, 122, 2, 30, "Input"],
Cell[CellGroupData[{
Cell[16894, 412, 178, 3, 90, "Input"], Cell[17075, 417, 1983, 35, 675,
"Output"] }, Open ]],
Cell[19073, 455, 238, 5, 70, "Input"],
Cell[CellGroupData[{
Cell[19336, 464, 878, 13, 350, "Input"], Cell[20217, 479, 9853, 178,
2641, "Output"] }, Open ]],
Cell[CellGroupData[{
Cell[30107, 662, 92, 1, 30, "Input"], Cell[30202, 665, 258, 5, 63,
"Message"] }, Open ]],
Cell[30475, 673, 676, 16, 110, "Input"] }
]
*)
(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)
- Follow-Ups:
- Re: Debug program
- From: seanross@worldnet.att.net
- Re: Debug program