Re: ``flattening" systems of equations
- To: mathgroup@smc.vnet.net
- Subject: [mg10410] Re: ``flattening" systems of equations
- From: Julian Stoev <stoev@SPAM-RE-MO-VER-usa.net>
- Date: Tue, 13 Jan 1998 02:07:14 -0500
- Organization: Seoul National University, Republic of Korea
- References: <69co6a$ent@smc.vnet.net>
On 12 Jan 1998, Selwyn Hollis wrote: |What is the simplest way to convert a system of equations like this: |{{a,b,...}=={c,d,...}, e==f} |into this: |{a==c, b==d,..., e==f}? |(Solve[] works on systems in either form, but FindRoot[] seems to |require the second.) In[10]:= Flatten@Map[Thread,{{a1,a2}=={b1,b2}, c1==d1}] Out[10]= {a1==b1,a2==b2,c1==d1} In[11]:= Flatten@Map[Thread,{{a1,a2,a3}=={b1,b2,b3}, c1==d1}] Out[11]= {a1==b1,a2==b2,a3==b3,c1==d1} In[12]:= Flatten@Map[Thread,{{a1,a2,a3}=={b1,b2,b3}, c1==d1,c2==d2}] Out[12]= {a1==b1,a2==b2,a3==b3,c1==d1,c2==d2} In[13]:= Flatten@Map[Thread,{{a1,a2,a3}=={b1,b2,b3}, {c1==d1,c2==d2}}] Out[13]= {a1==b1,a2==b2,a3==b3,c1==d1,c2==d2} -------------------------------------------------------------------------- Julian Stoev <j.h.stoev@ieee.org> - Ph. D. Student Intelligent Information Processing Lab. - Seoul National University, Korea