Re: ``flattening" systems of equations
- To: mathgroup@smc.vnet.net
- Subject: [mg10423] Re: ``flattening" systems of equations
- From: Allan Hayes <hay@haystack.demon.co.uk>
- Date: Tue, 13 Jan 1998 02:07:24 -0500
- References: <69co6a$ent@smc.vnet.net>
Selwyn Hollis wrote: > What is the simplest way to convert a system of equations like this: > > {{a,b,...}=={c,d,...}, e==f} > > into this: > > {a==c, b==d,..., e==f}? > > (Solve[] works on systems in either form, but FindRoot[] seems to > require the second.) > > -- > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dr. Selwyn Hollis > Associate Professor of Mathematics > Armstrong Atlantic State University > Savannah, GA 31419 USA > <http://www.math.armstrong.edu/faculty/hollis/> > ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In[1]:= {{a,b}=={c,d}, e==f}/.(p_List==q_:> Thread[p==q])//Flatten Out[1]= a == c b == d e == f or In[2]:= {{a,b}=={c,d}, e==f}/.(p:Equal[_List,_]:> Thread[p])//Flatten Out[2]= a == c b == d e == f But, because of In[3]:= Equal[__List] Out[3]= True In[4]:= {{a,b}=={c,d}, e==f}/.(p:HoldPattern[Equal[__List]]:> Thread[p])//Flatten Out[4]= a == c b == d e == f -- Allan Hayes Mathematica Training and Consulting Leicester, UK hay@haystack.demon.co.uk http://www.haystack.demon.co.uk voice: +44 (0)116 271 4198 fax: +44 (0)116 271 8642