swap again
- To: mathgroup@smc.vnet.net
- Subject: [mg12422] swap again
- From: "Arturas Acus" <acus@itpa.lt>
- Date: Thu, 14 May 1998 11:15:31 -0400
Hello,
I want to say that with new mathkernel.exe problem still persist.
Actually I am not very interesting in the problem, but I think it can
be of some value if it is reproducible. I am sure that this is some
memory handling problem. The problem is too small to be out of memory
with 32RAM and 310Mb swap (there are no disk activity at all).
Interesting that I am able to simplify the particular element wich
causes the problem separatly. But I get "out of memory" message when I
try to simplify the whole matrix (inside Table to save memory of
course).
For those who are interesting I attach the whole notebook.
Arturas Acus
Institute of Theoretical
Physics and Astronomy
Gostauto 12, 2600,Vilnius
Lithuania
E-mail: acus@itpa.lt
Fax: 370-2-225361
Tel: 370-2-612906
-------------- Enclosure number 1 ----------------
(***********************************************************************
Mathematica-Compatible Notebook
This notebook can be used on any computer system with Mathematica 3.0,
MathReader 3.0, or any compatible application. The data for the
notebook starts with the line of stars above.
To get the notebook into a Mathematica-compatible application, do one of
the following:
* Save the data starting with the line of stars above into a file
with a name ending in .nb, then open the file inside the application;
* Copy the data starting with the line of stars above to the
clipboard, then use the Paste menu command inside the application.
Data for notebooks contains only printable 7-bit ASCII and can be sent
directly in email or through ftp in text mode. Newlines can be CR, LF
or CRLF (Unix, Macintosh or MS-DOS style).
NOTE: If you modify the data for this notebook not in a Mathematica-
compatible application, you must delete the line below containing the
word CacheID, otherwise Mathematica-compatible applications may try to
use invalid cache data.
For more information on notebooks and Mathematica-compatible
applications, contact Wolfram Research:
web: http://www.wolfram.com
email: info@wolfram.com
phone: +1-217-398-0700 (U.S.)
Notebook reader applications are available free of charge from Wolfram
Research.
***********************************************************************)
(*CacheID: 232*)
(*NotebookFileLineBreakTest
NotebookFileLineBreakTest*)
(*NotebookOptionsPosition[ 21560, 588]*)
(*NotebookOutlinePosition[ 22209, 611]*) (*
CellTagsIndexPosition[ 22165, 607]*) (*WindowFrame->Normal*)
Notebook[{
Cell["\<\
invFactorized={{-((8*e2*r^2*(-1 + Cos[q0])*Csc[q2]^2)/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))), 0,
(8*e2*r^2*(-1 + Cos[q0])*Cot[q2]*Csc[q2])/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)), 0,
(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[qp2]*Csc[q2]*(Cos[q3]*Cos[qp1]
- \ Sin[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)),
(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[q2]*(Cos[qp1]*Sin[q3] + \
Cos[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)),
-((8*e2*r^2*Cos[q0/2]*(-1 +
Cos[q0])*Csc[q2]*Csc[qp2]*(Cos[q3]*Cos[qp1] - \ Sin[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2)))},
{0, -((8*e2*r^2*(-1 + Cos[q0]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))), 0,
0, -((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[qp2]*(Cos[qp1]*Sin[q3] +
\ Cos[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))),
(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*(Cos[q3]*Cos[qp1] -
Sin[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)),
(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[qp2]*(Cos[qp1]*Sin[q3] + \
Cos[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2))},
{(8*e2*r^2*(-1 + Cos[q0])*Cot[q2]*Csc[q2])/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)), 0,
(8*e2*r^2*Csc[q0]^2*Csc[q2]^2*(Sin[q0]^2 - Cos[q0]*Sin[q0]^2 +
4*Sin[q2]^2 \ -
4*Cos[q0]*Sin[q2]^2 - 3*Sin[q0]^2*Sin[q2]^2 + \
Cos[q0]*Sin[q0]^2*Sin[q2]^2))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)), 0,
-((4*e2*r^2*Csc[q0]^2*Csc[q2]*Csc[qp2]*
(-2*Cos[q0/2]*Cos[q2]*Cos[q3]*Cos[qp1]*Cos[qp2]*Sin[q0]^2 +
2*Cos[q0/2]*Cos[q0]*Cos[q2]*Cos[q3]*Cos[qp1]*Cos[qp2]*Sin[q0]^2 +
2*Cos[q0/2]*Cos[q2]*Cos[qp2]*Sin[q0]^2*Sin[q3]*Sin[qp1] -
2*Cos[q0/2]*Cos[q0]*Cos[q2]*Cos[qp2]*Sin[q0]^2*Sin[q3]*Sin[qp1] + \
4*Sin[q2]*Sin[qp2] -
4*Cos[q0]*Sin[q2]*Sin[qp2] - Sin[q0]^2*Sin[q2]*Sin[qp2] -
Cos[q0]*Sin[q0]^2*Sin[q2]*Sin[qp2]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))),
-((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[q2]*(Cos[qp1]*Sin[q3] + \
Cos[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))),
(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[q2]*Csc[qp2]*(Cos[q3]*Cos[qp1]
- \ Sin[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2))},
{0, 0, 0, -((4*e2*r^2)/(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + \
2*Sin[F]^2))), 0, 0, 0},
{(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[qp2]*Csc[q2]*(Cos[q3]*Cos[qp1]
- \ Sin[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)),
-((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[qp2]*(Cos[qp1]*Sin[q3] + \
Cos[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))),
-((4*e2*r^2*Csc[q0]^2*Csc[q2]*Csc[qp2]*
(-2*Cos[q0/2]*Cos[q2]*Cos[q3]*Cos[qp1]*Cos[qp2]*Sin[q0]^2 +
2*Cos[q0/2]*Cos[q0]*Cos[q2]*Cos[q3]*Cos[qp1]*Cos[qp2]*Sin[q0]^2 +
2*Cos[q0/2]*Cos[q2]*Cos[qp2]*Sin[q0]^2*Sin[q3]*Sin[qp1] -
2*Cos[q0/2]*Cos[q0]*Cos[q2]*Cos[qp2]*Sin[q0]^2*Sin[q3]*Sin[qp1] + \
4*Sin[q2]*Sin[qp2] -
4*Cos[q0]*Sin[q2]*Sin[qp2] - Sin[q0]^2*Sin[q2]*Sin[qp2] -
Cos[q0]*Sin[q0]^2*Sin[q2]*Sin[qp2]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))), 0,
-((e2*r^2*Csc[q0]^2*Csc[qp2]^2*(-6*dF^2*r^2*Sin[q0]^2 - \
24*e2*fpi2*r^2*Sin[q0]^2 +
6*dF^2*r^2*Cos[q0]*Sin[q0]^2 +
24*e2*fpi2*r^2*Cos[q0]*Sin[q0]^2 -
12*Sin[F]^2*Sin[q0]^2 + 12*Cos[q0]*Sin[F]^2*Sin[q0]^2 - \
13*dF^2*r^2*Sin[q0]^4 -
4*e2*fpi2*r^2*Sin[q0]^4 - 16*dF^2*r^2*Cos[F]*Sin[q0]^4 -
16*e2*fpi2*r^2*Cos[F]*Sin[q0]^4 - 10*Sin[F]^2*Sin[q0]^4 -
16*Cos[F]*Sin[F]^2*Sin[q0]^4 - 32*dF^2*r^2*Sin[qp2]^2 - \
32*e2*fpi2*r^2*Sin[qp2]^2 -
32*dF^2*r^2*Cos[F]*Sin[qp2]^2 -
32*e2*fpi2*r^2*Cos[F]*Sin[qp2]^2 +
32*dF^2*r^2*Cos[q0]*Sin[qp2]^2 +
32*e2*fpi2*r^2*Cos[q0]*Sin[qp2]^2 \ +
32*dF^2*r^2*Cos[F]*Cos[q0]*Sin[qp2]^2 + \
32*e2*fpi2*r^2*Cos[F]*Cos[q0]*Sin[qp2]^2 -
32*Sin[F]^2*Sin[qp2]^2 - 32*Cos[F]*Sin[F]^2*Sin[qp2]^2 +
32*Cos[q0]*Sin[F]^2*Sin[qp2]^2 + \
32*Cos[F]*Cos[q0]*Sin[F]^2*Sin[qp2]^2 +
16*dF^2*r^2*Cos[q0]*Sin[q0]^2*Sin[qp2]^2 +
16*e2*fpi2*r^2*Cos[q0]*Sin[q0]^2*Sin[qp2]^2 +
16*dF^2*r^2*Cos[F]*Cos[q0]*Sin[q0]^2*Sin[qp2]^2 +
16*e2*fpi2*r^2*Cos[F]*Cos[q0]*Sin[q0]^2*Sin[qp2]^2 +
16*Cos[q0]*Sin[F]^2*Sin[q0]^2*Sin[qp2]^2 +
16*Cos[F]*Cos[q0]*Sin[F]^2*Sin[q0]^2*Sin[qp2]^2 + \
12*dF^2*r^2*Sin[q0]^4*Sin[qp2]^2 +
12*e2*fpi2*r^2*Sin[q0]^4*Sin[qp2]^2 + \
12*dF^2*r^2*Cos[F]*Sin[q0]^4*Sin[qp2]^2 +
12*e2*fpi2*r^2*Cos[F]*Sin[q0]^4*Sin[qp2]^2 + \
12*Sin[F]^2*Sin[q0]^4*Sin[qp2]^2 +
12*Cos[F]*Sin[F]^2*Sin[q0]^4*Sin[qp2]^2))/
(4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + \
Sin[q0]^2))), 0,
-((e2*r^2*Cot[qp2]*Csc[qp2]*(6*dF^2*r^2 + 24*e2*fpi2*r^2 - \
6*dF^2*r^2*Cos[q0] -
24*e2*fpi2*r^2*Cos[q0] + 12*Sin[F]^2 - 12*Cos[q0]*Sin[F]^2 + \
13*dF^2*r^2*Sin[q0]^2 +
4*e2*fpi2*r^2*Sin[q0]^2 + 16*dF^2*r^2*Cos[F]*Sin[q0]^2 +
16*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + 10*Sin[F]^2*Sin[q0]^2 + \
16*Cos[F]*Sin[F]^2*Sin[q0]^2))/
(4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + \
Sin[q0]^2)))},
{(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[q2]*(Cos[qp1]*Sin[q3] + \
Cos[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)),
(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*(Cos[q3]*Cos[qp1] -
Sin[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)),
-((8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[q2]*(Cos[qp1]*Sin[q3] + \
Cos[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))), 0,
0, (e2*r^2*(6*dF^2*r^2 + 24*e2*fpi2*r^2 - 6*dF^2*r^2*Cos[q0] - \
24*e2*fpi2*r^2*Cos[q0] +
12*Sin[F]^2 - 12*Cos[q0]*Sin[F]^2 + 13*dF^2*r^2*Sin[q0]^2 + \
4*e2*fpi2*r^2*Sin[q0]^2 +
16*dF^2*r^2*Cos[F]*Sin[q0]^2 + 16*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 +
\ 10*Sin[F]^2*Sin[q0]^2 +
16*Cos[F]*Sin[F]^2*Sin[q0]^2))/
(4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] +
Sin[q0]^2)), \ 0},
{-((8*e2*r^2*Cos[q0/2]*(-1 +
Cos[q0])*Csc[q2]*Csc[qp2]*(Cos[q3]*Cos[qp1] - \ Sin[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + \
2*Cos[q0] + Sin[q0]^2))),
(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Csc[qp2]*(Cos[qp1]*Sin[q3] + \
Cos[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)),
(8*e2*r^2*Cos[q0/2]*(-1 + Cos[q0])*Cot[q2]*Csc[qp2]*(Cos[q3]*Cos[qp1]
- \ Sin[q3]*Sin[qp1]))/
(Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 +
2*Cos[q0] \ + Sin[q0]^2)), 0,
-((e2*r^2*Cot[qp2]*Csc[qp2]*(6*dF^2*r^2 + 24*e2*fpi2*r^2 - \
6*dF^2*r^2*Cos[q0] -
24*e2*fpi2*r^2*Cos[q0] + 12*Sin[F]^2 - 12*Cos[q0]*Sin[F]^2 + \
13*dF^2*r^2*Sin[q0]^2 +
4*e2*fpi2*r^2*Sin[q0]^2 + 16*dF^2*r^2*Cos[F]*Sin[q0]^2 +
16*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + 10*Sin[F]^2*Sin[q0]^2 + \
16*Cos[F]*Sin[F]^2*Sin[q0]^2))/
(4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + \
Sin[q0]^2))), 0,
(e2*r^2*Csc[qp2]^2*(6*dF^2*r^2 + 24*e2*fpi2*r^2 - 6*dF^2*r^2*Cos[q0]
- \ 24*e2*fpi2*r^2*Cos[q0] +
12*Sin[F]^2 - 12*Cos[q0]*Sin[F]^2 + 13*dF^2*r^2*Sin[q0]^2 + \
4*e2*fpi2*r^2*Sin[q0]^2 +
16*dF^2*r^2*Cos[F]*Sin[q0]^2 + 16*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 +
\ 10*Sin[F]^2*Sin[q0]^2 +
16*Cos[F]*Sin[F]^2*Sin[q0]^2))/
(4*Pi*(-1 + Cos[F])*(1 + Cos[F])*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(dF^2*r^2 + 4*e2*fpi2*r^2 + 2*Sin[F]^2)*(-2 + 2*Cos[q0] + \
Sin[q0]^2))}};\
\>", "Input"],
Cell["\<\
fullGM={{1/(48*e2*r^2)*Pi*(40*dF^2*r^2*Sin[F]^2 +
40*e2*fpi2*r^2*Sin[F]^2 +
24*dF^2*r^2*Cos[q0]*Sin[F]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 +
\ 40*Sin[F]^4 +
24*Cos[q0]*Sin[F]^4 + 3*dF^2*r^2*Sin[q0]^2 +
12*e2*fpi2*r^2*Sin[q0]^2 \ -
3*dF^2*r^2*Cos[F]*Sin[q0]^2 - 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \
6*Sin[F]^2*Sin[q0]^2 -
4*dF^2*r^2*Sin[F]^2*Sin[q0]^2 - 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2
-
6*Cos[F]*Sin[F]^2*Sin[q0]^2 - 4*Sin[F]^4*Sin[q0]^2 + \
6*dF^2*r^2*Sin[q2]^2 +
24*e2*fpi2*r^2*Sin[q2]^2 - 6*dF^2*r^2*Cos[F]*Sin[q2]^2 - \
24*e2*fpi2*r^2*Cos[F]*Sin[q2]^2 -
6*dF^2*r^2*Cos[q0]*Sin[q2]^2 - 24*e2*fpi2*r^2*Cos[q0]*Sin[q2]^2 +
6*dF^2*r^2*Cos[F]*Cos[q0]*Sin[q2]^2 + \
24*e2*fpi2*r^2*Cos[F]*Cos[q0]*Sin[q2]^2 +
12*Sin[F]^2*Sin[q2]^2 - 8*dF^2*r^2*Sin[F]^2*Sin[q2]^2 - \
8*e2*fpi2*r^2*Sin[F]^2*Sin[q2]^2 -
12*Cos[F]*Sin[F]^2*Sin[q2]^2 - 12*Cos[q0]*Sin[F]^2*Sin[q2]^2 +
8*dF^2*r^2*Cos[q0]*Sin[F]^2*Sin[q2]^2 + \
8*e2*fpi2*r^2*Cos[q0]*Sin[F]^2*Sin[q2]^2 +
12*Cos[F]*Cos[q0]*Sin[F]^2*Sin[q2]^2 - 8*Sin[F]^4*Sin[q2]^2 +
8*Cos[q0]*Sin[F]^4*Sin[q2]^2 - 3*dF^2*r^2*Sin[q0]^2*Sin[q2]^2 -
12*e2*fpi2*r^2*Sin[q0]^2*Sin[q2]^2 + \
3*dF^2*r^2*Cos[F]*Sin[q0]^2*Sin[q2]^2 +
12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2*Sin[q2]^2 - \
6*Sin[F]^2*Sin[q0]^2*Sin[q2]^2 +
4*dF^2*r^2*Sin[F]^2*Sin[q0]^2*Sin[q2]^2 + \
4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2*Sin[q2]^2 +
6*Cos[F]*Sin[F]^2*Sin[q0]^2*Sin[q2]^2 + \
4*Sin[F]^4*Sin[q0]^2*Sin[q2]^2), 0,
1/(48*e2*r^2)*Pi*Cos[q2]*(40*dF^2*r^2*Sin[F]^2 +
40*e2*fpi2*r^2*Sin[F]^2 + \
24*dF^2*r^2*Cos[q0]*Sin[F]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 +
\ 40*Sin[F]^4 +
24*Cos[q0]*Sin[F]^4 + 3*dF^2*r^2*Sin[q0]^2 +
12*e2*fpi2*r^2*Sin[q0]^2 \ -
3*dF^2*r^2*Cos[F]*Sin[q0]^2 - 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \
6*Sin[F]^2*Sin[q0]^2 -
4*dF^2*r^2*Sin[F]^2*Sin[q0]^2 - 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2
-
6*Cos[F]*Sin[F]^2*Sin[q0]^2 - 4*Sin[F]^4*Sin[q0]^2), 0,
(Pi*(3 + Cos[q0])*Cos[q2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \
Sin[F]^2))/(3*e2*r^2),
1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \
Sin[F]^2)*Sin[q2]*
(Cos[qp1]*Sin[q3] + Cos[q3]*Sin[qp1]),
-(1/(3*e2*r^2)*2*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)*
(-2*Cos[q2]*Cos[qp2] + Cos[q2]*Cos[qp2]*Sin[q0/2]^2 +
2*Cos[q0/2]*Cos[q3]*Cos[qp1]*Sin[q2]*Sin[qp2] -
2*Cos[q0/2]*Sin[q2]*Sin[q3]*Sin[qp1]*Sin[qp2]))},
{0, 1/(24*e2*r^2)*Pi*(3*dF^2*r^2 + 12*e2*fpi2*r^2 - 3*dF^2*r^2*Cos[F]
- \ 12*e2*fpi2*r^2*Cos[F] -
3*dF^2*r^2*Cos[q0] - 12*e2*fpi2*r^2*Cos[q0] + \
3*dF^2*r^2*Cos[F]*Cos[q0] +
12*e2*fpi2*r^2*Cos[F]*Cos[q0] + 6*Sin[F]^2 + 16*dF^2*r^2*Sin[F]^2
+
16*e2*fpi2*r^2*Sin[F]^2 - 6*Cos[F]*Sin[F]^2 - 6*Cos[q0]*Sin[F]^2
+
16*dF^2*r^2*Cos[q0]*Sin[F]^2 + 16*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 +
6*Cos[F]*Cos[q0]*Sin[F]^2 + 16*Sin[F]^4 + 16*Cos[q0]*Sin[F]^4),
0, 0, \ 0,
1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(Cos[q3]*Cos[qp1] - Sin[q3]*Sin[qp1]),
1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(Cos[qp1]*Sin[q3] + Cos[q3]*Sin[qp1])*Sin[qp2]},
{1/(48*e2*r^2)*Pi*Cos[q2]*(40*dF^2*r^2*Sin[F]^2 +
40*e2*fpi2*r^2*Sin[F]^2 + \
24*dF^2*r^2*Cos[q0]*Sin[F]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 +
\ 40*Sin[F]^4 +
24*Cos[q0]*Sin[F]^4 + 3*dF^2*r^2*Sin[q0]^2 +
12*e2*fpi2*r^2*Sin[q0]^2 \ -
3*dF^2*r^2*Cos[F]*Sin[q0]^2 - 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \
6*Sin[F]^2*Sin[q0]^2 -
4*dF^2*r^2*Sin[F]^2*Sin[q0]^2 - 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2
-
6*Cos[F]*Sin[F]^2*Sin[q0]^2 - 4*Sin[F]^4*Sin[q0]^2), 0,
1/(48*e2*r^2)*Pi*(40*dF^2*r^2*Sin[F]^2 + 40*e2*fpi2*r^2*Sin[F]^2 +
24*dF^2*r^2*Cos[q0]*Sin[F]^2 + 24*e2*fpi2*r^2*Cos[q0]*Sin[F]^2 +
\ 40*Sin[F]^4 +
24*Cos[q0]*Sin[F]^4 + 3*dF^2*r^2*Sin[q0]^2 +
12*e2*fpi2*r^2*Sin[q0]^2 \ -
3*dF^2*r^2*Cos[F]*Sin[q0]^2 - 12*e2*fpi2*r^2*Cos[F]*Sin[q0]^2 + \
6*Sin[F]^2*Sin[q0]^2 -
4*dF^2*r^2*Sin[F]^2*Sin[q0]^2 - 4*e2*fpi2*r^2*Sin[F]^2*Sin[q0]^2
-
6*Cos[F]*Sin[F]^2*Sin[q0]^2 - 4*Sin[F]^4*Sin[q0]^2), 0,
(Pi*(3 + Cos[q0])*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \
Sin[F]^2))/(3*e2*r^2), 0,
(Pi*(3 + Cos[q0])*Cos[qp2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \
Sin[F]^2))/(3*e2*r^2)},
{0, 0, 0, -((Pi*(-1 + Cos[F])*(dF^2*r^2 + 4*e2*fpi2*r^2 + \
2*Sin[F]^2))/(4*e2*r^2)), 0, 0, 0},
{(Pi*(3 + Cos[q0])*Cos[q2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \
Sin[F]^2))/(3*e2*r^2), 0,
(Pi*(3 + Cos[q0])*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \
Sin[F]^2))/(3*e2*r^2), 0,
(4*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2))/(3*e2*r^2), 0,
(4*Pi*Cos[qp2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2))/(3*e2*r^2)},
{1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \
Sin[F]^2)*Sin[q2]*
(Cos[qp1]*Sin[q3] + Cos[q3]*Sin[qp1]),
1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(Cos[q3]*Cos[qp1] - Sin[q3]*Sin[qp1]), 0, 0, 0,
(4*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2))/(3*e2*r^2), 0},
{-(1/(3*e2*r^2)*2*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2)*
(-2*Cos[q2]*Cos[qp2] + Cos[q2]*Cos[qp2]*Sin[q0/2]^2 +
2*Cos[q0/2]*Cos[q3]*Cos[qp1]*Sin[q2]*Sin[qp2] -
2*Cos[q0/2]*Sin[q2]*Sin[q3]*Sin[qp1]*Sin[qp2])),
1/(3*e2*r^2)*4*Pi*Cos[q0/2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2)*
(Cos[qp1]*Sin[q3] + Cos[q3]*Sin[qp1])*Sin[qp2],
(Pi*(3 + Cos[q0])*Cos[qp2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + \
Sin[F]^2))/(3*e2*r^2), 0,
(4*Pi*Cos[qp2]*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 +
Sin[F]^2))/(3*e2*r^2), \ 0,
(4*Pi*Sin[F]^2*(dF^2*r^2 + e2*fpi2*r^2 + Sin[F]^2))/(3*e2*r^2)}};\
\>", "Input"],
Cell[BoxData[
\(\(\n (*\
This\ fails.\ Actually\ I\ multiply\ matrix\ and\ its\ inverse\
so\
there\ can\ be\ 1\ or\ 0\ elements\ only\ *) \)\)], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(Table[Print[{i, k}]; \n\t\t
Simplify[Part[Dot[invFactorized\ , fullGM], i, k]], {i, 7}, {k,
i, 7}]
// TableForm\)], "Input"],
Cell[BoxData[
\({1, 1}\)], "Print"],
Cell[BoxData[
\({1, 2}\)], "Print"],
Cell[BoxData[
\({1, 3}\)], "Print"],
Cell[BoxData[
\({1, 4}\)], "Print"],
Cell[BoxData[
\({1, 5}\)], "Print"],
Cell[BoxData[
\({1, 6}\)], "Print"],
Cell[BoxData[
\({1, 7}\)], "Print"],
Cell[BoxData[
\({2, 2}\)], "Print"],
Cell[BoxData[
\({2, 3}\)], "Print"],
Cell[BoxData[
\({2, 4}\)], "Print"],
Cell[BoxData[
\({2, 5}\)], "Print"],
Cell[BoxData[
\({2, 6}\)], "Print"],
Cell[BoxData[
\({2, 7}\)], "Print"],
Cell[BoxData[
\({3, 3}\)], "Print"],
Cell[BoxData[
\({3, 4}\)], "Print"],
Cell[BoxData[
\({3, 5}\)], "Print"],
Cell[BoxData[
\({3, 6}\)], "Print"],
Cell[BoxData[
\({3, 7}\)], "Print"],
Cell[BoxData[
\({4, 4}\)], "Print"],
Cell[BoxData[
\({4, 5}\)], "Print"],
Cell[BoxData[
\({4, 6}\)], "Print"],
Cell[BoxData[
\({4, 7}\)], "Print"],
Cell[BoxData[
\({5, 5}\)], "Print"],
Cell[BoxData[
\({5, 6}\)], "Print"],
Cell[BoxData[
\({5, 7}\)], "Print"],
Cell["Out of memory. Exiting.", "Print"] }, Open ]],
Cell[BoxData[
\( (*\
by\ the\ way\ one\ time\ after\ this\ exit\ I\ obtained\ message\
from\
front\ end\ \((in\ the\ separate\ window)\)\n
\tthat\
\(\*"\""Resource\ \((1223)\)\ is\ out\ of\ range\ \((0 - 1046)\)
\*"
\""\)\ after\ that\ the\ whole\ program\ was\ shuted\
down.\ \n\t\tAlso\ the\ exit\ behaviour\ is\ completely\
reproducible
\ on\ my\ Win95 \((osr1)\)\ P166, \ 32 Ram, \
310\ swap \((exacly)\)\ *) \)], "Input"],
Cell[BoxData[
\( (*\ input\ again\ matrices\ invFactorized\ , fullGM\ *) \)],
"Input"],
Cell[BoxData[
\( (*\ this\ now\ works\ ok\ *) \)], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(\(\tSimplify[Part[Dot[invFactorized\ , fullGM], 5, 7]]\)\)],
"Input"],
Cell[BoxData[
\(0\)], "Output"]
}, Open ]],
Cell[BoxData[
\(Quit[]\)], "Input"],
Cell[BoxData[
\( (*\ input\ again\ matrices\ invFactorized\ , fullGM\ *) \)],
"Input"],
Cell[BoxData[
\( (*\
this\ shows\ that\ element\ [5, 7]\ indeed\ caused\ the\ problem\
*)
\)], "Input"],
Cell[CellGroupData[{
Cell[BoxData[
\(Table[Print[{i, k}];
If[And[i === 5, k === 7], \n\t\t
Expand[Numerator[
Together[
TrigToExp[\(Dot[invFactorized\ , fullGM]\)[\([i,
k]\)]]]]], \n
\t\tSimplify[Part[Dot[invFactorized\ , fullGM], i, k]]], {i,
7}, {
k, i, 7}] // TableForm\)], "Input"],
Cell[BoxData[
\({1, 1}\)], "Print"],
Cell[BoxData[
\({1, 2}\)], "Print"],
Cell[BoxData[
\({1, 3}\)], "Print"],
Cell[BoxData[
\({1, 4}\)], "Print"],
Cell[BoxData[
\({1, 5}\)], "Print"],
Cell[BoxData[
\({1, 6}\)], "Print"],
Cell[BoxData[
\({1, 7}\)], "Print"],
Cell[BoxData[
\({2, 2}\)], "Print"],
Cell[BoxData[
\({2, 3}\)], "Print"],
Cell[BoxData[
\({2, 4}\)], "Print"],
Cell[BoxData[
\({2, 5}\)], "Print"],
Cell[BoxData[
\({2, 6}\)], "Print"],
Cell[BoxData[
\({2, 7}\)], "Print"],
Cell[BoxData[
\({3, 3}\)], "Print"],
Cell[BoxData[
\({3, 4}\)], "Print"],
Cell[BoxData[
\({3, 5}\)], "Print"],
Cell[BoxData[
\({3, 6}\)], "Print"],
Cell[BoxData[
\({3, 7}\)], "Print"],
Cell[BoxData[
\({4, 4}\)], "Print"],
Cell[BoxData[
\({4, 5}\)], "Print"],
Cell[BoxData[
\({4, 6}\)], "Print"],
Cell[BoxData[
\({4, 7}\)], "Print"],
Cell[BoxData[
\({5, 5}\)], "Print"],
Cell[BoxData[
\({5, 6}\)], "Print"],
Cell[BoxData[
\({5, 7}\)], "Print"],
Cell[BoxData[
\({6, 6}\)], "Print"],
Cell[BoxData[
\({6, 7}\)], "Print"],
Cell[BoxData[
\({7, 7}\)], "Print"],
Cell[BoxData[
InterpretationBox[GridBox[{
{"1", "0", "0", "0", "0", "0", "0"},
{"1", "0", "0", "0", "0", "0", \(""\)},
{"1", "0", "0", "0", "0", \(""\), \(""\)},
{"1", "0", "0", "0", \(""\), \(""\), \(""\)},
{"1", "0", "0", \(""\), \(""\), \(""\), \(""\)},
{"1", "0", \(""\), \(""\), \(""\), \(""\), \(""\)},
{"1", \(""\), \(""\), \(""\), \(""\), \(""\), \(""\)}
},
RowSpacings->1,
ColumnSpacings->3,
RowAlignments->Baseline,
ColumnAlignments->{Left}],
TableForm[
{{1, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0}, {1,
0, 0,
0}, {1, 0, 0}, {1, 0}, {1}}]]], "Output"] }, Open ]],
Cell[BoxData[
\(\( (*\
There\ are\ actually\ one\ more\ element\ \ in\ the\ whole\
matrix\
which\ causes\ the\ same\ problem.\ I\ am\ not\ interesting\ in\
it\
because\ both\ matrices\ are\ symetric.\ This\ is\ simply\
check\
whether\ multiplication\ of\ matrix\ and\ its\ inverse\ give\
the\
identity\ matrix\ *) \ \)\)], "Input"] },
FrontEndVersion->"Microsoft Windows 3.0", ScreenRectangle->{{0, 800},
{0, 544}}, WindowSize->{464, 404},
WindowMargins->{{79, Automatic}, {Automatic, 5}} ]
(***********************************************************************
Cached data follows. If you edit this Notebook file directly, not
using Mathematica, you must remove the line containing CacheID at the
top of the file. The cache data will then be recreated when you save
this file from within Mathematica.
***********************************************************************)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[1709, 49, 8856, 175, 1920, "Input"], Cell[10568, 226, 5792, 111,
1344, "Input"], Cell[16363, 339, 173, 3, 50, "Input"],
Cell[CellGroupData[{
Cell[16561, 346, 161, 3, 50, "Input"], Cell[16725, 351, 39, 1, 25,
"Print"], Cell[16767, 354, 39, 1, 25, "Print"], Cell[16809, 357, 39, 1,
25, "Print"], Cell[16851, 360, 39, 1, 25, "Print"], Cell[16893, 363,
39, 1, 25, "Print"], Cell[16935, 366, 39, 1, 25, "Print"], Cell[16977,
369, 39, 1, 25, "Print"], Cell[17019, 372, 39, 1, 25, "Print"],
Cell[17061, 375, 39, 1, 25, "Print"], Cell[17103, 378, 39, 1, 25,
"Print"], Cell[17145, 381, 39, 1, 25, "Print"], Cell[17187, 384, 39, 1,
25, "Print"], Cell[17229, 387, 39, 1, 25, "Print"], Cell[17271, 390,
39, 1, 25, "Print"], Cell[17313, 393, 39, 1, 25, "Print"], Cell[17355,
396, 39, 1, 25, "Print"], Cell[17397, 399, 39, 1, 25, "Print"],
Cell[17439, 402, 39, 1, 25, "Print"], Cell[17481, 405, 39, 1, 25,
"Print"], Cell[17523, 408, 39, 1, 25, "Print"], Cell[17565, 411, 39, 1,
25, "Print"], Cell[17607, 414, 39, 1, 25, "Print"], Cell[17649, 417,
39, 1, 25, "Print"], Cell[17691, 420, 39, 1, 25, "Print"], Cell[17733,
423, 39, 1, 25, "Print"], Cell[17775, 426, 41, 0, 25, "Print"] }, Open
]],
Cell[17831, 429, 496, 9, 90, "Input"], Cell[18330, 440, 90, 1, 30,
"Input"], Cell[18423, 443, 63, 1, 30, "Input"],
Cell[CellGroupData[{
Cell[18511, 448, 89, 1, 30, "Input"], Cell[18603, 451, 35, 1, 29,
"Output"] }, Open ]],
Cell[18653, 455, 39, 1, 30, "Input"], Cell[18695, 458, 90, 1, 30,
"Input"], Cell[18788, 461, 121, 3, 30, "Input"],
Cell[CellGroupData[{
Cell[18934, 468, 336, 7, 70, "Input"], Cell[19273, 477, 39, 1, 25,
"Print"], Cell[19315, 480, 39, 1, 25, "Print"], Cell[19357, 483, 39, 1,
25, "Print"], Cell[19399, 486, 39, 1, 25, "Print"], Cell[19441, 489,
39, 1, 25, "Print"], Cell[19483, 492, 39, 1, 25, "Print"], Cell[19525,
495, 39, 1, 25, "Print"], Cell[19567, 498, 39, 1, 25, "Print"],
Cell[19609, 501, 39, 1, 25, "Print"], Cell[19651, 504, 39, 1, 25,
"Print"], Cell[19693, 507, 39, 1, 25, "Print"], Cell[19735, 510, 39, 1,
25, "Print"], Cell[19777, 513, 39, 1, 25, "Print"], Cell[19819, 516,
39, 1, 25, "Print"], Cell[19861, 519, 39, 1, 25, "Print"], Cell[19903,
522, 39, 1, 25, "Print"], Cell[19945, 525, 39, 1, 25, "Print"],
Cell[19987, 528, 39, 1, 25, "Print"], Cell[20029, 531, 39, 1, 25,
"Print"], Cell[20071, 534, 39, 1, 25, "Print"], Cell[20113, 537, 39, 1,
25, "Print"], Cell[20155, 540, 39, 1, 25, "Print"], Cell[20197, 543,
39, 1, 25, "Print"], Cell[20239, 546, 39, 1, 25, "Print"], Cell[20281,
549, 39, 1, 25, "Print"], Cell[20323, 552, 39, 1, 25, "Print"],
Cell[20365, 555, 39, 1, 25, "Print"], Cell[20407, 558, 39, 1, 25,
"Print"], Cell[20449, 561, 714, 16, 120, "Output"] }, Open ]],
Cell[21178, 580, 378, 6, 130, "Input"] }
]
*)
(***********************************************************************
End of Mathematica Notebook file.
***********************************************************************)