Re: Integration Problems
- To: mathgroup at smc.vnet.net
- Subject: [mg13933] Re: [mg13926] Integration Problems
- From: Wouter Meeussen <w.meeussen.vdmcc at vandemoortele.be>
- Date: Tue, 8 Sep 1998 02:52:31 -0400
- Sender: owner-wri-mathgroup at wolfram.com
dear Georgios, if the answer were indeed (509.399 - 2.92295 10^-5 I) etc, there *would* be a problem, but (509.399 - 2.92295 10^-15 I) etc.. * is clearly a floating point 'residue' caused by your giving a numerical parameter 4.73 (with no accuracy attached to it). Somewhere Mathematica must have swithed to the NIntegrate routine. look for instance at the indefinite Integrate[W2[x,t],x] : Out[5]= (-1.653497140625001 + 0.*I)* (32./E^(9.46*x) - 0.002493010912484319*E^(9.46*x) - 308.0638986263043*x + ((0. + 0.*I)*Cos[4.73*x])/E^(4.73*x) - (1.129788293085026 - 1.77635683940025*^-15*I)* E^(4.73*x)*Cos[4.73*x] - 32.*Cos[9.46*x] - ((128. + 0.*I)*Sin[4.73*x])/E^(4.73*x) - (2.664535259100375*^-15 + 0.*I)*E^(4.73*x)* Sin[4.73*x] + 0.*I*Sin[9.46*x])*q[2, 1][t]^2 the imaginary parts are already in there! But in the indefinite integral with symbolic parameter a in place of 4.73 : Out[8]= -((E^(2*a*x - 2*(-(a*(1 - x)) - a*x))* (a^2/E^(a*(1 - x)) + a^2/E^(a*x) + a^2*Cos[a*x] - a^2*Sin[a*x])^2* (-E^(-2*a) + E^(-4*a*x) - (2*a*x)/E^(2*a*x) - 4*a*E^(-a - 2*a*x)*x - 4*E^(-a - a*x)*Cos[a*x] - Cos[2*a*x]/E^(2*a*x) - (4*Sin[a*x])/E^(3*a*x))* q[2, 1][t]^2)/ (2*a*(E^(a*(1 - x)) + E^(a*x) + E^(a*(1 - x) + a*x)*Cos[a*x] - E^(a*(1 - x) + a*x)*Sin[a*x])^2)) you will find no imaginary 'residues', so the integration technique must have been different. fill in the upper & lower bound, In[10]:=(int/. x->1) - (int /. x->0) and do a FullSimplify on that: Out[11]= (a^3*(1 + 2*a - 2/E^(2*a) + 4*Cos[a] + Cos[2*a] + (4*(-1 + a + Sin[a]))/E^a)*q[2, 1][t]^2)/2 only then would I introduce %/. a->4.73 Out[12]= 509.3985730174712*q[2, 1][t]^2 I hope this puts you onto some nifty ideas (;-)) wouter. At 01:22 07.09.98 -0400, you wrote: >Dear Sirs , > >while performing the following evaluation, i received an unexpected >result: > >1.) W1[x_,t_]:= > q[2,1][t] (Sin[4.73 x] - Cos[4.73 x] + Exp[-4.73 x] + Exp[-4.73 >(1-x)]); > >2.) W2[x_,t_]:=Evaluate[(D[W1[x,t],{x,2} ])^2] > >3.) Integrate[W2[x,t],{x,0,1}] > >Answer: > >(509.399 -2.922295 X 10^-5 I) q[2,1][t]^2 > >Could you please tell me, why does an imaginary part arise though the >function >that is being integrated is real ? > >Thank you very much for your time. > >Georgios > > NV Vandemoortele Coordination Center Oils & Fats Applied Research Prins Albertlaan 79 Postbus 40 B-8870 Izegem (Belgium) Tel: +/32/51/33 21 11 Fax: +/32/51/33 21 75 vdmcc at vandemoortele.be