Re: D vs. Derivative
- To: mathgroup at smc.vnet.net
- Subject: [mg15673] Re: D vs. Derivative
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Sat, 30 Jan 1999 04:29:05 -0500 (EST)
- References: <78pcjv$d3r@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Gianluca Gorni wrote in message <78pcjv$d3r at smc.vnet.net>... > >Hello! > >It seems that D[f[x],x] and f'[x] are not equivalent, and the latter can >give useless outputs. > >Consider the following power series, that converges in the unit disk of >the complex field: > > f[x_] = Sum[ x^(n-1)/(n^3+n), {n, 1, Infinity} ] > >With immediate assignment, f[x] is evaluated to a special function. >Suppose now that I need the derivative of f[x]. If I do it with > > D[ f[x], x ] > >there is no problem: I get a regular-looking special function >combination. But if I try to get the derivative with > > f'[x] > >the output is a formula containing DirectedInfinity. Moreover > > f'[x] // Simplify > >gives Indeterminate. > >By the way, the integral > > Integrate[ (1-Cos[y])/(E^y-x), {y, 0, Infinity} ] > >is left as it is by Mathematica, although it is equal to the special >function f[x] above, at least for many values of x. > > > +---------------------------------+ > | Gianluca Gorni | > | Universita` di Udine | > | Dipartimento di Matematica | > | e Informatica | > | via delle Scienze 208 | > | I-33100 Udine UD | > | Italy | > +---------------------------------+ > | Ph.: (39) 0432-558422 | > | Fax: (39) 0432-558499 | > | mailto:gorni at dimi.uniud.it | > | http://www.dimi.uniud.it/~gorni | > +---------------------------------+ > > Gianluca, Clear["`*"] f' is df& where df = D[f[#],#] The problem that you mention seems to involve h[x_] =HypergeometricPFQ[{I,1},{1+I},x]; D[h[#],#] DirectedInfinity[((1/2 + I/2)*Sqrt[2]* Sign[Gamma[2 + I]])/Sign[Gamma[1 + I]]] which is equal to h'[#] DirectedInfinity[((1/2 + I/2)*Sqrt[2]*Sign[Gamma[2 + I]])/ Sign[Gamma[1 + I]]] while D[h[x],x] -(1/((-1 + x)*x)*I*(1 - HypergeometricPFQ[{I, 1}, {1 + I}, x] + x*HypergeometricPFQ[{I, 1}, {1 + I}, x])) Interestingly, from feh[x_] = FunctionExpand[h[x]] (I*Beta[x, I, 0])/x^I We get D[feh[#],#] I/((1 - #1)*#1) + Beta[#1, I, 0]*#1^(-1 - I) which is the same as feh'[#] I/((1 - #1)*#1) + Beta[#1, I, 0]*#1^(-1 - I) and D[feh[x],x] I/((1 - x)*x) + x^(-1 - I)*Beta[x, I, 0] Also Sum[1/n^2,{n,Infinity}] Pi^2/6 but Sum[1/#^2,{#,Infinity}] Sum[1/#1^2, {#1, 1, Infinity}] Allan --------------------- Allan Hayes Mathematica Training and Consulting www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565