Re: Some problems with complex functions like Sqrt[z]
- To: mathgroup at smc.vnet.net
- Subject: [mg18188] Re: [mg18168] Some problems with complex functions like Sqrt[z]
- From: "Andrzej Kozlowski" <andrzej at tuins.ac.jp>
- Date: Mon, 21 Jun 1999 22:50:32 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Here is how you can quickly get the answer you want: In[1]:= f[z_]:=Sqrt[z] In[2]:= re=ComplexExpand[Re[f[a+I b]],TargetFunctions->{Re,Im}] Out[2]= 2 2 1/4 ArcTan[a, b] (a + b ) Cos[------------] 2 In[3]:= im=ComplexExpand[Im[f[a+I b]],TargetFunctions->{Re,Im}] Out[3]= 2 2 1/4 ArcTan[a, b] (a + b ) Sin[------------] 2 In[4]:= D[{re,im},a].D[{re,im},b]//FullSimplify Out[4]= 0 -- Andrzej Kozlowski Toyama International University JAPAN http://sigma.tuins.ac.jp http://eri2.tuins.ac.jp ---------- >From: Robert Prus <robert at fuw.edu.pl> To: mathgroup at smc.vnet.net >To: mathgroup at smc.vnet.net >Subject: [mg18188] [mg18168] Some problems with complex functions like Sqrt[z] >Date: Sun, Jun 20, 1999, 12:54 PM > > Hi, > > For any complex (holomorphic) function f[z] I should obtain 0 as the result > of the following calculations: > > Mathematica 3.0 for Silicon Graphics > Copyright 1988-97 Wolfram Research, Inc. > -- Motif graphics initialized -- > > In[1]:= f[z_]:=z^3 > > In[2]:= re=Re[f[a+I b]]//ComplexExpand > > 3 2 > Out[2]= a - 3 a b > > In[3]:= im=Im[f[a+I b]]//ComplexExpand > > 2 3 > Out[3]= 3 a b - b > > In[4]:= D[{re,im},a].D[{re,im},b]//Simplify > > Out[4]= 0 > > But if I choose more complicated function, like Sqrt[z], I obtain: > > In[5]:= f[z_]:=Sqrt[z] > > In[6]:= re=Re[f[a+I b]]//ComplexExpand > > Arg[a + I b] > Out[6]= Sqrt[Abs[a + I b]] Cos[------------] > 2 > > In[7]:= im=Im[f[a+I b]]//ComplexExpand > > Arg[a + I b] > Out[7]= Sqrt[Abs[a + I b]] Sin[------------] > 2 > > In[8]:= D[{re,im},a].D[{re,im},b]//Simplify > > I 2 2 2 > - (Abs'[a + I b] + Abs[a + I b] Arg'[a + I b] ) > 4 > Out[8]= ------------------------------------------------- > Abs[a + I b] > > In the following one can use the substitutions: > > Abs'[x_+I y_] -> x/Sqrt[x^2+y^2] > > Arg'[x_+I y_] -> -y/(x^2+y^2) > > (one can check them using: > > z=Abs'[x+I y]-x/Sqrt[x^2+y^2] (* or z=Arg'[x+I y]+y/(x^2+y^2) *) > Plot3D[Chop[z],{x,-10,10},{y,-10,10}] > Plot3D[Chop[z],{x,Random[],Random[]},{y,Random[],Random[]}] > ) > > As the final result I obtain: > > In[10]:= %8/.{Abs'[x_+I y_] -> x/Sqrt[x^2+y^2], Arg'[x_+I y_] -> > -y/(x^2+y^2)}/.Abs[x_+I y_] -> Sqrt[x^2+y^2]//Together > > I > - > 4 > Out[10]= ------------- > 2 2 > Sqrt[a + b ] > > Under Mathematica 2.0 as the final result I have: > > In[9]:= %8/.{Abs'[x_+I y_] -> x/Sqrt[x^2+y^2], Arg'[x_+I y_] -> > -y/(x^2+y^2)}/.Abs[x_+I y_] -> Sqrt[x^2+y^2]//Together > > b > Out[9]= ------------------------- > 2 2 > 4 (a - I b) Sqrt[a + b ] > > But it should be equal to zero !!! > > Any comments? > > Robert Prus, robert at fuw.edu.pl > Institute of Theoretical Physics, Warsaw University > Hoza 69, 00-681 Warsaw, Poland