Re: Some problems with complex functions like Sqrt[z]
- To: mathgroup at smc.vnet.net
- Subject: [mg18206] Re: [mg18168] Some problems with complex functions like Sqrt[z]
- From: "Richard Finley" <rfinley at medicine.umsmed.edu>
- Date: Mon, 21 Jun 1999 22:50:45 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Robert, Try the following: In[1]:= f[z_]:=Sqrt[z] In[2]:= re = ComplexExpand[Re[f[a + I b]], TargetFunctions->{Re,Im}]; In[3]:= im = ComplexExpand[Im[f[a + I b]], TargetFunctions->{Re, Im}]; In[4]:= D[{re,im},a].D[{re,im},b]//FullSimplify Out[4]:= 0 Hope that helps..... RF >>> Robert Prus <robert at fuw.edu.pl> 06/19/99 09:54PM >>> Hi, For any complex (holomorphic) function f[z] I should obtain 0 as the result of the following calculations: Mathematica 3.0 for Silicon Graphics Copyright 1988-97 Wolfram Research, Inc. -- Motif graphics initialized -- In[1]:= f[z_]:=z^3 In[2]:= re=Re[f[a+I b]]//ComplexExpand 3 2 Out[2]= a - 3 a b In[3]:= im=Im[f[a+I b]]//ComplexExpand 2 3 Out[3]= 3 a b - b In[4]:= D[{re,im},a].D[{re,im},b]//Simplify Out[4]= 0 But if I choose more complicated function, like Sqrt[z], I obtain: In[5]:= f[z_]:=Sqrt[z] In[6]:= re=Re[f[a+I b]]//ComplexExpand Arg[a + I b] Out[6]= Sqrt[Abs[a + I b]] Cos[------------] 2 In[7]:= im=Im[f[a+I b]]//ComplexExpand Arg[a + I b] Out[7]= Sqrt[Abs[a + I b]] Sin[------------] 2 In[8]:= D[{re,im},a].D[{re,im},b]//Simplify I 2 2 2 - (Abs'[a + I b] + Abs[a + I b] Arg'[a + I b] ) 4 Out[8]= ------------------------------------------------- Abs[a + I b] In the following one can use the substitutions: Abs'[x_+I y_] -> x/Sqrt[x^2+y^2] Arg'[x_+I y_] -> -y/(x^2+y^2) (one can check them using: z=Abs'[x+I y]-x/Sqrt[x^2+y^2] (* or z=Arg'[x+I y]+y/(x^2+y^2) *) Plot[Chop[z],{x,-10,10},{y,-10,10}] Plot[Chop[z],{x,Random[],Random[]},{y,Random[],Random[]}] ) As the final result I obtain: In[10]:= %8/.{Abs'[x_+I y_] -> x/Sqrt[x^2+y^2], Arg'[x_+I y_] -> -y/(x^2+y^2)}/.Abs[x_+I y_] -> Sqrt[x^2+y^2]//Together I - 4 Out[10]= ------------- 2 2 Sqrt[a + b ] Under Mathematica 2.0 as the final result I have: In[9]:= %8/.{Abs'[x_+I y_] -> x/Sqrt[x^2+y^2], Arg'[x_+I y_] -> -y/(x^2+y^2)}/.Abs[x_+I y_] -> Sqrt[x^2+y^2]//Together b Out[9]= ------------------------- 2 2 4 (a - I b) Sqrt[a + b ] But it should be equal to zero !!! Any comments? Robert Prus, robert at fuw.edu.pl Institute of Theoretical Physics, Warsaw University Hoza 69, 00-681 Warsaw, Poland