Re: algorithm to generate 1/f noise
- To: mathgroup at smc.vnet.net
- Subject: [mg22122] Re: algorithm to generate 1/f noise
- From: Roland Franzius <Roland.Franzius at uos.de>
- Date: Wed, 16 Feb 2000 02:34:38 -0500 (EST)
- Organization: RRZN - Newsserver Test
- References: <8889s2$c5o@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Hi David,
do you think of something like this?
SektralDensity[k_, dk_] := Log[1 + dk/k]
Plot[SpektralDensity[k, 0.1], {k, 100, 2000}]
aTrial = Table[Random[Real, {-p[k, 0.1], p[k, 0.1]}], {k, 100, 2000,
0.1}];
ListPlot[aTrial]
functionBase[t_] = Cos[Table[ 2 Pi k t, {k, 100, 2000, 0.1}]];
f[t_] := aTrial . functionBase[t];
ListPlot[Table[f[t], {t, 0, 1, 0.01}], PlotJoined -> True, PlotRange ->
All]
have fun (and noise)
roland
"David E. Burmaster" schrieb:
>
> Hi
>
> Can anyone point me towards a good algorithm or package to generate 1/f
> noise in a time series using Mathematica??
>
> Pointers to books and articles (using Mathematica) also appreciated!
>
> many thanks, and
> best wishes
> Dave
>
> ++++++++++++++++++++++++++++++
> David E. Burmaster, Ph.D.
> Alceon Corporation
> POBox 382669
> Harvard Square Station
> Cambridge, MA 02238-2669
>
> Voice 617-864-4300
> Fax 617-864-9954
>
> Web http://www.Alceon.com
> Email deb at Alceon.com
>
> +++++++++++++++++++++++++++++++
--
Roland Franzius
+++ exactly <<n>> lines of this message have value <<FALSE>> +++