Fit[] versus Regress[] inconsistent behahiour
- To: mathgroup at smc.vnet.net
- Subject: [mg31864] Fit[] versus Regress[] inconsistent behahiour
- From: "Robert Nowak" <robert.nowak at ims.co.at>
- Date: Fri, 7 Dec 2001 05:57:02 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
Hi to all Mathematica Manual says: "Fit[data, funs, vars] finds a leastsquares fit to a list of data as a linear combination of the functions funs of variables vars." but behaviour is different as one can see: In[59]:= f1[x]=2; f2[x]=3 x; In[61]:= data = {{1, 2}, {2, 2.5}, {3, 3}}; In[62]:= Fit[data, {f1[x], f2[x]}, x]//CoefficientList[#,x]& Out[62]= {1.5,0.5} (* ?????????? wondering if the above result is correct or is it a mathemeatica bug ??????????? *) (* Mathematica seems to strip all linear coefficients form the base functions *) In[69]:= Fit[data, {a 1,b x}, x]//CoefficientList[#,x]& Out[69]= {1.5,0.5} (* ?????????? wondering where a and b have gone no error massage a and b where just stripped ??????????? *) (* Mathematica seems to strip all linear coefficients form the base functions *) In[63]:= Fit[data, {1,x}, x]//CoefficientList[#,x]& Out[63]= {1.5,0.5} (* correct linear fit calulation but perhaps not what you want *) In[64]:= <<Statistics`LinearRegression` In[65]:= BestFitParameters/.Regress[data, {1,x}, x,RegressionReport->BestFitParameters] Out[65]= {1.5,0.5} (* correct linear fit calulation but perhaps not what you want *) In[66]:= BestFitParameters/.Regress[data, {f1[x],f2[x]}, x, RegressionReport->BestFitParameters] Out[66]= {0.75,0.166667} (* !!!! this should be your correct solution !!!!! *) -- --- Robert Nowak (robert.nowak at ims.co.at) IMS Nanofabrication GmbH A-1020 Wien, Schreygasse 3, Austria Phone: (+43 1)2144894-32, Fax: (+43 1)2144894-99