Re: ComplexExpand & ExpIntegralEi
- To: mathgroup at smc.vnet.net
- Subject: [mg31845] Re: [mg31821] ComplexExpand & ExpIntegralEi
- From: Andrzej Kozlowski <andrzej at tuins.ac.jp>
- Date: Fri, 7 Dec 2001 05:56:27 -0500 (EST)
- Sender: owner-wri-mathgroup at wolfram.com
You can avoid this problem by setting the option TargetFunctions to {Re,Im}: In[2]:= ComplexExpand[Conjugate[ExpIntegralEi[I x/a]],TargetFunctions->{Re,Im}] Out[2]= I x I x I Im[ExpIntegralEi[-(---)]] + Re[ExpIntegralEi[-(---)]] a a It seems if ComplexExpand is allowed to use Conjugate as a TargetFunction it will not remove it in cases like: In[9]:= ComplexExpand[F[Conjugate[x]]] Out[9]= F[Conjugate[x]] although it will do so if F is replaced by many standard functions, e.g.: In[11]:= ComplexExpand[Sin[Conjugate[x]]] Out[11]= Sin[x] but not In[12]:= ComplexExpand[ExpIntegralEi[Conjugate[x]]] In[12]:= ComplexExpand[ExpIntegralEi[Conjugate[x]]] Out[12]= I Im[ExpIntegralEi[Conjugate[x]]] + Re[ExpIntegralEi[Conjugate[x]]] If you use TargetFunctions to "ban" Conjugate you will ge the expression you expected. It indeed looks like a bug to me. Andrzej Kozlowski Toyama International University JAPAN http://platon.c.u-tokyo.ac.jp/andrzej/ On Wednesday, December 5, 2001, at 08:51 PM, Blimbaum Jerry DLPC wrote: > Why duzz ComplexExpand[Conjugate[ExpIntegralEi[I x/a]]] gives > terms like -I Conjugate[x]/Conjugate[a] rather then -I x/a , where I > is > the imaginary....Help says that ComplexExpand assumes all variables are > real... > > thanks....jerry blimbaum NSWC Panama City, Fl > > >