Re: restrictions on parameters
- To: mathgroup at smc.vnet.net
- Subject: [mg31973] Re: restrictions on parameters
- From: "Allan Hayes" <hay at haystack.demon.co.uk>
- Date: Fri, 14 Dec 2001 16:53:01 -0500 (EST)
- References: <9vcgq9$3js$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Thomas, Yes, the restrictions need to be applied locally: Clear[a,b,c,d] restrictions={a<0,b>0,c>0,d>0}; A={{a,b},{c,d}}; eigen=Eigensystem[A]; det1=Det[A]; Simplify[det1<0, restrictions] True The same technique works on the eigenvalues Also note Simplify[Sign[{eigen[[1]],det1}],restrictions] {{-1,1},-1} Allan --------------------- Allan Hayes Mathematica Training and Consulting Leicester UK www.haystack.demon.co.uk hay at haystack.demon.co.uk Voice: +44 (0)116 271 4198 Fax: +44 (0)870 164 0565 "Thomas Steger" <steger at uni-greifswald.de> wrote in message news:9vcgq9$3js$1 at smc.vnet.net... > Example: Given the restrictions on the parameters as shown below, I > would like to check the sign of the determinant or the eigenvalues of > Matrix A. The problem seems to be that the restricions on the parameters > are not properly specified. > > Clear[a, b, c, d] > a < 0; b > 0; c > 0; d > 0; > A = {{a, b}, {c, d}}; > > eigen = Eigensystem[A]; > {d1, d2} = {eigen[[1, 1]], eigen[[1, 2]]}; > > det1 = Det[A] > -b c + a d > > TrueQ[det1 < 0] > False > > This should be true! > > TrueQ[d1 < 0] > False >