Re: RE: Double Integral
- To: mathgroup at smc.vnet.net
- Subject: [mg29234] Re: [mg29217] RE: Double Integral
- From: BobHanlon at aol.com
- Date: Wed, 6 Jun 2001 04:24:22 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
In a message dated 2001/6/5 4:42:53 AM, Yannis.Paraskevopoulos at ubsw.com writes: >I'm trying to create a function that computes the following double >integral subject to some input parameters: > >f[k1_,k2_,r_,t_]:= > > NIntegrate[1/(2 Pi Sqrt[1-r^2]) >Exp[(x1^2-2*r*x1*x2+x2^2)/(2(1-r^2))], {x1,-Infinity, k1/Sqrt[t]}, >{x2,- Infinity, k2/Sqrt[t]}] > >but I'm failing dramatically. I'm wondering if there's a way to deal >with this? > Needs["Statistics`MultinormalDistribution`"]; PDF[MultinormalDistribution[{0, 0}, {{1, r}, {r, 1}}], {x1, x2}]//Simplify E^((x1^2 - 2*r*x2*x1 + x2^2)/ (2*r^2 - 2))/(2*Pi*Sqrt[1 - r^2]) f[k1_, k2_, r_, t_] := CDF[MultinormalDistribution[{0, 0}, {{1, r}, {r, 1}}], {k1/Sqrt[t], k2/Sqrt[t]}]; Plot3D[f[k1, k2, .5, 1.], {k1, -2., 2.}, {k2, -2., 2.}]; Bob Hanlon Chantilly, VA USA