Re: approximation for partitial binomial sum
- To: mathgroup at smc.vnet.net
- Subject: [mg36407] Re: approximation for partitial binomial sum
- From: "Carl K. Woll" <carlw at u.washington.edu>
- Date: Wed, 4 Sep 2002 21:22:24 -0400 (EDT)
- Organization: University of Washington
- References: <al4b46$rgl$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Constantine, If you break your problem up into two cases, even n and odd n, then Mathematica can sum up your problem and get results, albeit with hypergeometric functions. Consider the following (make sure you look at this with a fixed font): In[21]:= evenans = Sum[Binomial[2*n, k]*p^(2*n - k)*(1 - p)^k, {k, 0, n - 1}]; In[22]:= PowerExpand[FunctionExpand[FullSimplify[evenans, n \[Element] Integers]]] Out[22]= 2 n n n 1 p - 1 2 (1 - p) p Gamma[n + -] Hypergeometric2F1[1, -n, n + 1, -----] 2 p 1 - -------------------------------------------------------------------- Sqrt[Pi] Gamma[n + 1] In[23]:= oddans = Sum[Binomial[2*n + 1, k]*p^(2*n + 1 - k)*(1 - p)^k, {k, 0, n - 1}]; In[24]:= PowerExpand[FunctionExpand[FullSimplify[oddans, n \[Element] Integers]]] Out[24]= 2 n + 1 n n + 1 3 p - 1 2 (1 - p) p Gamma[n + -] Hypergeometric2F1[1, -n - 1, n + 1, -----] 2 p 1 - ------------------------------------------------------------------------ -------- Sqrt[Pi] Gamma[n + 2] Is this what you were looking for? Carl Woll Physics Dept U of Washington "Constantine" <celster at cs.technion.ac.il> wrote in message news:al4b46$rgl$1 at smc.vnet.net... > Hi. > I want to get some F and R such that: > > F[n,p] + R[n,p] = Sum[Binomial[n,k] p^(n-k) (1-p)^k, {k, 0, Floor[n/2] - 1}], > when F[n,p] is an approximation to the sum and the R is the remaining error. > > Thanks in advance for any hint. > Constantine. > > At 06:34 AM 8/28/2002 -0400, you wrote: > > >In a message dated 8/28/02 4:44:13 AM, celster at cs.technion.ac.il writes: > > > > > >>I'm looking for a way of finding the approximation for partitial binomial > >>sum. > >>I'll be pleasant for any hint.. > > > > > >Use the standard add-on package Statistics`NonlinearFit` to do a > >NonlinearFit to whatever model you want to use for the approximation. > > > > > >Bob Hanlon > >Chantilly, VA USA > > Constantine Elster > Computer Science Dept. > Technion I.I.T. > Office: Taub 411 > Tel: +972 4 8294375 > >