'#1' raised to a power in result of a Solve[] call?
- To: mathgroup at smc.vnet.net
- Subject: [mg40568] '#1' raised to a power in result of a Solve[] call?
- From: ergeorge at worldnet.att.net (eg)
- Date: Thu, 10 Apr 2003 03:39:53 -0400 (EDT)
- Sender: owner-wri-mathgroup at wolfram.com
What does this mean? Here's part of the solution:
\!\(\(\(\(a ->
Root[324\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2 -
972\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2\
Sin[inc]\^2 +
729\ \@\(1 - ecc\^2\)\ J2\^4\ k\^2\ u\ Cos[inc]\^2\
Sin[inc]\^4 +
432\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ #1\^2 -
864\ ecc\^2\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ #1\^2 +
432\ ecc\^4\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ #1\^2 -
648\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\ #1\^2 +
1296\ ecc\^2\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\
#1\^2 -
648\ ecc\^4\ J2\^3\ k\^2\ u\ Cos[inc]\^2\ Sin[inc]\^2\
#1\^2 +
144\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ Cos[inc]\^2\ #1\^4
-
432\ ecc\^2\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\
Cos[inc]\^2\ #1\^4 \
+ 432\ ecc\^4\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\ Cos[inc]\^2\ #1\^4 -
144\ ecc\^6\ \@\(1 - ecc\^2\)\ J2\^2\ k\^2\ u\
Cos[inc]\^2\ #1\^4 \
- 64\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11 +
448\ ecc\^2\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11
-
1344\ ecc\^4\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11
+
2240\ ecc\^6\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11
-
2240\ ecc\^8\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11
+
1344\ ecc\^10\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\
#1\^11 -
448\ ecc\^12\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11
+
64\ ecc\^14\ \@\(1 - ecc\^2\)\ \[CapitalOmega]\^2\ #1\^11
&,
1]\)\(}\)\)\(,\)\)\)
Any ideas? I found the stuff on slot numbers and pure functions in
the manual, but either this doesn't fit that explenation, or I don't
understand slot numbers & pure functions.
Thanks!
- Follow-Ups:
- Re: '#1' raised to a power in result of a Solve[] call?
- From: Dr Bob <majort@cox-internet.com>
- Re: '#1' raised to a power in result of a Solve[] call?