Re: Limit of an expression?
- To: mathgroup at smc.vnet.net
- Subject: [mg67578] Re: Limit of an expression?
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Sat, 1 Jul 2006 05:12:09 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <e7td7i$3lg$1@smc.vnet.net>
- Sender: owner-wri-mathgroup at wolfram.com
Virgil Stokes wrote:
> In the following expression, s is an integer (>= 1), Lambda, Mu, and t
> are real numbers and all > 0.
> What is the limit of the following as t goes to infinity?
>
> \!\(\(1 - \[ExponentialE]\^\(\(-\[Mu]\)\ t\ \((s - 1 - \
> \[Lambda]\/\[Mu])\)\)\)\/\(s - 1 - \[Lambda]\/\[Mu]\)\)
>
> --V. Stokes
>
=====
Sorry for the mess with the fonts in my previous post. Please, find
hereunder a readable version of it.
=====
Hi Virgil,
Contrary to some functions such as Integrate, Limit does not returned
conditional answers; that is, Limit will return a solution only if it
can establish the convergence or divergence of the expression without
taking in account the values of parameters. For instance, compare the
following answers to a simple limit
In[1]:=
Limit[E^(-t), t -> Infinity]
Out[1]=
0
In[2]:=
Limit[E^((-a)*t), t -> Infinity]
Out[2]=
-a t
Limit[E , t -> Infinity]
Of course, in the latter case you can add an assumption on the parameter
'a' and get the answer
In[3]:=
Limit[E^((-a)*t), t -> Infinity, Assumptions -> a > 0]
Out[3]=
0
Now, let's go back to your original question. In Mathematica form, we have
In[4]:=
Limit[(1 - E^((-mu)*t*(s - 1 - lambda/mu)))/
(s - 1 - lambda/mu), t -> Infinity,
Assumptions -> {Element[s, Integers], s > 0, lambda > 0,
mu > 0, t > 0}]
Out[4]=
-mu (-1 - lambda/mu + s) t
1 - E
Limit[-------------------------------, t -> Infinity,
lambda
-1 - ------ + s
mu
Assumptions ->
{Element[s, Integers], s > 0, lambda > 0, mu > 0, t > 0}]
As stated above, the expression is returned unevaluated since there is
indeed three possible answers depending on the respective value of s,
mu, and lambda. We can see by inspection that the limit of the
exponential function depends on the value of
In[5]:=
Simplify[E^((-mu)*t*(s - 1 - lambda/mu)),
Assumptions -> {Element[s, Integers], s > 0, lambda > 0,
mu > 0, t > 0}]
Out[5]=
(lambda + mu - mu s) t
E
Therefore, we compute the different values in three steps
In[6]=
Limit[(1 - E^((-mu)*t*(s - 1 - lambda/mu)))/
(s - 1 - lambda/mu), t -> Infinity,
Assumptions -> {Element[s,Integers], s > 0, lambda > 0,
mu > 0, t > 0, lambda + mu - mu*s > 0}]
Out[6]=
Infinity
In[7]:=
Limit[(1 - E^((-mu)*t*(s - 1 - lambda/mu)))/
(s - 1 - lambda/mu), t -> Infinity,
Assumptions -> {Element[s, Integers], s > 0, lambda > 0,
mu > 0, t > 0, lambda + mu - mu*s == 0}]
Out[7]=
0
In[8]:=
Limit[(1 - E^((-mu)*t*(s - 1 - lambda/mu)))/
(s - 1 - lambda/mu), t -> Infinity,
Assumptions -> {Element[s, Integers], s > 0, lambda > 0,
mu > 0, t > 0, lambda + mu - mu*s < 0}]
Out[8]=
mu
-(------------------)
lambda + mu - mu s
Best regards,
Jean-Marc