Re: animation question
- To: mathgroup at smc.vnet.net
- Subject: [mg71208] Re: [mg71153] animation question
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Fri, 10 Nov 2006 06:38:14 -0500 (EST)
- Reply-to: hanlonr at cox.net
fr[n_]:=Plot[ (Sqrt[7*x^4+6*x+5]-Sqrt[7*x^4+3*x+3])* Sqrt[63*x^2-5*x+20],{x,0,n}, PlotRange->{{0,10},{2,6.5}}, Frame->{True,True,False,False}, Epilog->{Red,Line[{{0,4.5},{10,4.5}}]}]; Table[fr[n],{n,1,10,0.1}]; SelectionMove[EvaluationNotebook[],All,GeneratedCell]; FrontEndTokenExecute["CellGroup"]; FrontEndTokenExecute["OpenCloseGroup"]; Bob Hanlon ---- dimitris <dimmechan at yahoo.com> wrote: > Consider the simple animation > > fr[n_] := Show[Plot[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + > 3])*Sqrt[63*x^2 - 5*x + 20], {x, 0, n}, > PlotRange -> {{0, 10}, {2, 6.5}}, Frame -> {True, True, False, > False}], Graphics[{Red, Line[{{0, 4.5}, {10, 4.5}}]}]] > > Table[fr[n], {n, 1, 10, 0.1}]; > SelectionMove[EvaluationNotebook[], All, GeneratedCell]; > FrontEndTokenExecute["CellGroup"] > FrontEndTokenExecute["OpenCloseGroup"] > > How is possible to hold the red line (which has the meaning of the > limit as x->infinity; try > Limit[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + 3])*Sqrt[63*x^2 - 5*x > + 20], x -> Infinity]) > fixed (i.e. not "animated")? > > I think where I have inserted the graphic primitive I can't avoid this. > But I can't think something other. > > Regards > Dimitris >