Re: animation question
- To: mathgroup at smc.vnet.net
- Subject: [mg71226] Re: animation question
- From: "ben" <benjamin.friedrich at gmail.com>
- Date: Fri, 10 Nov 2006 06:39:06 -0500 (EST)
- References: <eiurmk$ggr$1@smc.vnet.net>
Dear Dimitris Use e.g. Prolog fr[n_] := Show[ Plot[ (Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + 3])* Sqrt[63*x^2 - 5*x + 20], {x, 0, n}, Prolog -> { { Red, Line[ { {0, 4.5}, {10, 4.5} } ] } }, PlotRange -> {{0, 10}, {2, 6.5}}, Frame -> {True, True, False, False}]] Table[fr[n], {n, 1, 10, 1}]; SelectionMove[EvaluationNotebook[], All, GeneratedCell]; FrontEndTokenExecute["CellGroup"] FrontEndTokenExecute["OpenCloseGroup"] Bye Ben Personally, I prefer to save the animation to a file, saves me some trouble with complex animations Export[Table[frame[i],{i,n},"movie.gif"]; Run["xanim movie.gif"]; dimitris schrieb: > Consider the simple animation > > fr[n_] := Show[Plot[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + > 3])*Sqrt[63*x^2 - 5*x + 20], {x, 0, n}, > PlotRange -> {{0, 10}, {2, 6.5}}, Frame -> {True, True, False, > False}], Graphics[{Red, Line[{{0, 4.5}, {10, 4.5}}]}]] > > Table[fr[n], {n, 1, 10, 0.1}]; > SelectionMove[EvaluationNotebook[], All, GeneratedCell]; > FrontEndTokenExecute["CellGroup"] > FrontEndTokenExecute["OpenCloseGroup"] > > How is possible to hold the red line (which has the meaning of the > limit as x->infinity; try > Limit[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + 3])*Sqrt[63*x^2 - 5*x > + 20], x -> Infinity]) > fixed (i.e. not "animated")? > > I think where I have inserted the graphic primitive I can't avoid this. > But I can't think something other. > > Regards > Dimitris