Re: animation question
- To: mathgroup at smc.vnet.net
- Subject: [mg71226] Re: animation question
- From: "ben" <benjamin.friedrich at gmail.com>
- Date: Fri, 10 Nov 2006 06:39:06 -0500 (EST)
- References: <eiurmk$ggr$1@smc.vnet.net>
Dear Dimitris
Use e.g. Prolog
fr[n_] := Show[
Plot[
(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + 3])*
Sqrt[63*x^2 - 5*x + 20], {x, 0, n},
Prolog -> {
{
Red,
Line[
{
{0, 4.5}, {10, 4.5}
}
]
}
},
PlotRange -> {{0, 10}, {2, 6.5}},
Frame -> {True, True, False, False}]]
Table[fr[n], {n, 1, 10, 1}];
SelectionMove[EvaluationNotebook[], All, GeneratedCell];
FrontEndTokenExecute["CellGroup"]
FrontEndTokenExecute["OpenCloseGroup"]
Bye
Ben
Personally, I prefer to save the animation
to a file, saves me some trouble with
complex animations
Export[Table[frame[i],{i,n},"movie.gif"];
Run["xanim movie.gif"];
dimitris schrieb:
> Consider the simple animation
>
> fr[n_] := Show[Plot[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x +
> 3])*Sqrt[63*x^2 - 5*x + 20], {x, 0, n},
> PlotRange -> {{0, 10}, {2, 6.5}}, Frame -> {True, True, False,
> False}], Graphics[{Red, Line[{{0, 4.5}, {10, 4.5}}]}]]
>
> Table[fr[n], {n, 1, 10, 0.1}];
> SelectionMove[EvaluationNotebook[], All, GeneratedCell];
> FrontEndTokenExecute["CellGroup"]
> FrontEndTokenExecute["OpenCloseGroup"]
>
> How is possible to hold the red line (which has the meaning of the
> limit as x->infinity; try
> Limit[(Sqrt[7*x^4 + 6*x + 5] - Sqrt[7*x^4 + 3*x + 3])*Sqrt[63*x^2 - 5*x
> + 20], x -> Infinity])
> fixed (i.e. not "animated")?
>
> I think where I have inserted the graphic primitive I can't avoid this.
> But I can't think something other.
>
> Regards
> Dimitris