Hadamard Finite Part
- To: mathgroup at smc.vnet.net
- Subject: [mg71427] Hadamard Finite Part
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Sat, 18 Nov 2006 04:40:58 -0500 (EST)
$VersionNumber 5.2 Consider the following function f=x^4/(1+Exp[-x]); The integral of f over {0,Infinity} is divergent Block[{Message}, Integrate[f, {x, 0, Infinity}]] Infinity Here are some attempts to get the finite part of the integral in the Hadamard sense. First with the setting GenerateConditions->False Integrate[f, {x, 0, Infinity}, GenerateConditions -> False] 0 Then using the following setting List @@ Integrate[f, {x, 0, e}] (Limit[#1, e -> Infinity] & ) /@ % DeleteCases[%, _DirectedInfinity][[1]] N[%] {e^4*Log[1 + E^e], 4*e^3*PolyLog[2, -E^e], -12*e^2*PolyLog[3, -E^e], 24*e*PolyLog[4, -E^e], -24*PolyLog[5, -E^e], -((45*Zeta[5])/2)} {Infinity, -Infinity, Infinity, -Infinity, Infinity, -((45*Zeta[5])/2)} -((45*Zeta[5])/2) -23.33087449072582 Directing removing the divergent term Integrate[f - x^4, {x, 0, Infinity}] N[%] NIntegrate[f - x^4, {x, 0, Infinity}] -((45*Zeta[5])/2) -23.33087449072582 -23.330874489932825 Using the zeta function regularization technique Integrate[fx, 0, Infinity}, GenerateConditions -> False] % /. s -> 4 N[%] (-(-2)^(-s))*(-1 + 2^s)*Gamma[1 + s]*Zeta[1 + s] -((45*Zeta[5])/2) -23.33087449072582 So the finite part of the integral is -((45*Zeta[5])/2) and not 0 as GenerateConditions->True setting might cheat us. However using a convergence implying factor Exp[-e x] I got the following Integrate[f*Exp[(-e)*x], {x, 0, Infinity}, Assumptions -> e > 0] (Limit[#1, e -> 0] & ) /@ List @@ Expand[FunctionExpand[%]] DeleteCases[%, _DirectedInfinity][[1]] N[%] (3/4)*(Zeta[5, e/2] - Zeta[5, (1 + e)/2]) {(1/32)*PolyGamma[4, 1/2], Infinity} (1/32)*PolyGamma[4, 1/2] -24.108570307083355 Integrate[f*Exp[(-e)*x], {x, 0, Infinity}, Assumptions -> e > 0] (Limit[#1, e -> 0] & ) /@ List @@ % DeleteCases[%, _DirectedInfinity][[1]] N[%] (3/4)*(Zeta[5, e/2] - Zeta[5, (1 + e)/2]) {3/4, Infinity} 3/4 0.75 What I miss here? Thanks a lot Dimitris