Re: Hadamard Finite Part
- To: mathgroup at smc.vnet.net
- Subject: [mg71516] Re: Hadamard Finite Part
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Tue, 21 Nov 2006 07:05:13 -0500 (EST)
- References: <ejmkl6$gf5$1@smc.vnet.net>
Thanks (once more time!) to Maxim I realized where was my mistake. Integrate[f[x]*Exp[(-e)*x], {x, 0, Infinity}, Assumptions -> e > 0] Normal[Series[%, {e, 0, 3}]] List @@ % (Limit[#1, e -> 0] & ) /@ % DeleteCases[%, _DirectedInfinity] Plus @@ % N[%] (3/4)*(Zeta[5, e/2] - Zeta[5, (1 + e)/2]) 24/e^5 + (31*e*Pi^6)/252 + (127*e^3*Pi^8)/1440 - (45*Zeta[5])/2 - (2835/8)*e^2*Zeta[7] {24/e^5, (31*e*Pi^6)/252, (127*e^3*Pi^8)/1440, -((45*Zeta[5])/2), (-(2835/8))*e^2*Zeta[7]} {Infinity, 0, 0, -((45*Zeta[5])/2), 0} {0, 0, -((45*Zeta[5])/2), 0} -((45*Zeta[5])/2) -23.33087449072582 Also, as he suggest me, even the setting GenerateConditions->False can give the result -((45*Zeta[5])/2) if we simply transform the integrand so that the singularity is at zero: -Integrate[f[x]*dx /. x -> 1/x /. dx -> D[1/x, x], {x, 0, Infinity}, GenerateConditions -> False] N[%] -((45*Zeta[5])/2) -23.33087449072582 Dimitris dimitris wrote: > $VersionNumber > 5.2 > > Consider the following function > > f=x^4/(1+Exp[-x]); > > The integral of f over {0,Infinity} is divergent > > Block[{Message}, Integrate[f, {x, 0, Infinity}]] > Infinity > > Here are some attempts to get the finite part of the integral in the > Hadamard sense. > > First with the setting GenerateConditions->False > > Integrate[f, {x, 0, Infinity}, GenerateConditions -> False] > 0 > > Then using the following setting > > List @@ Integrate[f, {x, 0, e}] > (Limit[#1, e -> Infinity] & ) /@ % > DeleteCases[%, _DirectedInfinity][[1]] > N[%] > {e^4*Log[1 + E^e], 4*e^3*PolyLog[2, -E^e], -12*e^2*PolyLog[3, -E^e], > 24*e*PolyLog[4, -E^e], -24*PolyLog[5, -E^e], -((45*Zeta[5])/2)} > {Infinity, -Infinity, Infinity, -Infinity, Infinity, -((45*Zeta[5])/2)} > -((45*Zeta[5])/2) > -23.33087449072582 > > Directing removing the divergent term > > Integrate[f - x^4, {x, 0, Infinity}] > N[%] > NIntegrate[f - x^4, {x, 0, Infinity}] > -((45*Zeta[5])/2) > -23.33087449072582 > -23.330874489932825 > > Using the zeta function regularization technique > > Integrate[fx, 0, Infinity}, GenerateConditions -> False] > % /. s -> 4 > N[%] > (-(-2)^(-s))*(-1 + 2^s)*Gamma[1 + s]*Zeta[1 + s] > -((45*Zeta[5])/2) > -23.33087449072582 > > So the finite part of the integral is -((45*Zeta[5])/2) and not 0 as > GenerateConditions->True > setting might cheat us. > > However using a convergence implying factor Exp[-e x] I got the > following > > Integrate[f*Exp[(-e)*x], {x, 0, Infinity}, Assumptions -> e > 0] > (Limit[#1, e -> 0] & ) /@ List @@ Expand[FunctionExpand[%]] > DeleteCases[%, _DirectedInfinity][[1]] > N[%] > (3/4)*(Zeta[5, e/2] - Zeta[5, (1 + e)/2]) > {(1/32)*PolyGamma[4, 1/2], Infinity} > (1/32)*PolyGamma[4, 1/2] > -24.108570307083355 > > Integrate[f*Exp[(-e)*x], {x, 0, Infinity}, Assumptions -> e > 0] > (Limit[#1, e -> 0] & ) /@ List @@ % > DeleteCases[%, _DirectedInfinity][[1]] > N[%] > (3/4)*(Zeta[5, e/2] - Zeta[5, (1 + e)/2]) > {3/4, Infinity} > 3/4 > 0.75 > > What I miss here? > > Thanks a lot > Dimitris