Re: Differentiation problem/bug?
- To: mathgroup at smc.vnet.net
- Subject: [mg69787] Re: Differentiation problem/bug?
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Sat, 23 Sep 2006 04:44:17 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <eevrea$gfd$1@smc.vnet.net>
Arturas Acus wrote:
> Dear group,
>
> the only way I can explain the rezults of simple differentiation command
> D[] bellow is the dissapointing bug, which was absent in 5.0, but exist
> in:
> $Version
> 5.2 for Linux (June 20, 2005)
>
> In[1]: inp = 1/4 + 3/(8*E^((2*I)*F)) + (3*E^((2*I)*F))/8 -
> E^((-2*I)*F - I*\[Theta])/4 + E^((2*I)*F - I*\[Theta])/4 -
> E^((-2*I)*F + I*\[Theta])/4 + E^((2*I)*F + I*\[Theta])/4 +
> E^((-2*I)*F - (2*I)*\[Theta])/16 + E^((2*I)*F - (2*I)*\[Theta])/16+
> E^((-2*I)*F + (2*I)*\[Theta])/16 + E^((2*I)*F + (2*I)*\[Theta])/16-
> 1/(8*E^((2*I)*\[Theta])) - E^((2*I)*\[Theta])/8
>
> In[2]: D[inp, r, NonConstants -> {F}]
> Out[2]: 0
>
> how it was found:
>
> In[3]: D[#, r, NonConstants -> {F}] & /@ Expand[inp]
> Out[3]: (((-3*I)/4)*D[F, r, NonConstants -> {F}])/E^((2*I)*F) +
> ((3*I)/4)*E^((2*I)*F)*D[F, r, NonConstants -> {F}]
>
> check:
>
> In[4]: D[Evaluate[inp /. {F -> F[r]}], r] // FullSimplify
> Out[4]: ((-I/8)*((-1 + E^(I*\[Theta]))^4 - E^((4*I)*F[r])*(1 + E^(I*
> \[Theta]))^4)*Derivative[1][F][r])/E^((2*I)*(\[Theta] + F[r]))
>
>
> I believe I can trust the Out[4] rezult. Most dissapointing is that now
> I cannot trust my previous calculations, because somwhere I changed from
> version 5.0 to 5.2, and 5.0 gives correct rezult. Please check this
> behaviour for other versions/OS and be carefull using NonConstants
> option.
>
> Sincerely,
>
Same behavior/result with Mathematica 5.2 for Microsoft Windows (June
20, 2005).
Regards,
Jean-Marc