Re: List representation using element position
- To: mathgroup at smc.vnet.net
- Subject: [mg72514] Re: List representation using element position
- From: Peter Pein <petsie at dordos.net>
- Date: Wed, 3 Jan 2007 05:32:40 -0500 (EST)
- References: <enfgem$ss1$1@smc.vnet.net>
Dr. Wolfgang Hintze schrieb:
> Hello group,
> happy new year to all of you!
>
> This one was put up in a slightly different form by me in March 2006.
> It is now more general and it is lossless with respect to information:
>
> Given a list of integers which may repeat, e.g.
>
> lstIn = {2,3,4,4,2,1,1,5,4}
>
> provide a list of the different values and their respective positions in
> the original list. In the example,
>
> LstOut= {
> {1,{6,7}},
> {2,{2,5}},
> {3,{2}},
> {4,{3,4,9}},
> {5,{8}}
> }
>
> Who finds the shortest function doing this task in general?
>
> My solution appears 15 lines below
>
> Thanks.
>
> Best regards,
> Wolfgang
> 1
...
> fPos[lstIn_] := Module[{f = Flatten /@ (Position[lstIn, #1] & ) /@
> Union[lstIn]}, ({#1, f[[#1]]} & ) /@ Range[Length[f]]]
>
> In[15]:=
> fPos[lstIn]
>
> Out[15]=
> {{1, {6, 7}}, {2, {1, 5}}, {3, {2}}, {4, {3, 4, 9}}, {5, {8}}}
>
Hello Wolfgang,
your code can be shortened a bit:
First, I define the test-data:
data = {2, 3, 4, 4, 2, 1, 1, 5, 4};
SeedRandom[1];
test = Table[Random[Integer, {1, 100}], {10^6}];
fPos1 is essentially your code
fPos1 = Function[lst,
{#1, Flatten[Position[lst, #1]]}& /@ Union[lst] ];
fPos1[data]
First[Timing[ r1 = fPos1[test]; ]]
Out[5]=
{{1, {6, 7}}, {2, {1, 5}}, {3, {2}}, {4, {3, 4, 9}}, {5, {8}}}
Out[6]=
12.859*Second
fPos2 is a pure function using the Sow-Reap mechanism:
fPos2 = Module[{n = 1},
Flatten[Last[Reap[Scan[Sow[n++, #1]&, #1], Union[#1], List]], 1]]&;
fPos2[data]
First[Timing[ r2 = fPos2[test]; ]]
r1 === r2
Out[8]=
{{1, {6, 7}}, {2, {1, 5}}, {3, {2}}, {4, {3, 4, 9}}, {5, {8}}}
Out[9]=
3.266*Second
Out[10]=
True
Another pure function. The result is even worse (46.4 s), when using
MapIndexed instead of the Transpose[]-construct:
fPos3 = ({#1[[1,1]], #1[[All,2]]} & ) /@
Split[
Sort[Transpose[{#1, Range[Length[#1]]}], First[#1] <= First[#2] & ],
First[#1] == First[#2] & ] & ;
fPos3[data]
First[Timing[ r3 = fPos3[test]; ]]
r1 === r3
Out[12]=
{{1, {6, 7}}, {2, {1, 5}}, {3, {2}}, {4, {3, 4, 9}}, {5, {8}}}
Out[13]=
38.375*Second
Out[14]=
True
The next one is similar to fPos1 but uses Pick[] instead of Position[]:
fPos4[lst_] := Module[
{rl = Range[Length[lst]]},
Function[ul, Transpose[{ul, (Pick[rl, lst, #1] & ) /@ ul}]][Union[lst]]]
fPos4[data]
First[Timing[ r4 = fPos4[test]; ]]
r1 === r4
Out[16]=
{{1, {6, 7}}, {2, {1, 5}}, {3, {2}}, {4, {3, 4, 9}}, {5, {8}}}
Out[17]=
27.343*Second
Out[18]=
True
And finally the fastest solution, I've been able to find:
(tmp is the same as Split[Sort[lst]] but faster,
because I need the Ordering[] list anyway)
fPos5[lst_] := Module[
{ord = Ordering[lst], tmp},
tmp = Split[lst[[ord]]];
Transpose[{First /@ tmp, ord[[#1]]& /@
Rest[FoldList[
Range @@ (#1[[-1]] + {1, #2}) & , {0, 0}, Length /@ tmp
]]
}]
]
fPos5[data]
First[Timing[ r5 = fPos5[test]; ]]
r1 === r5
Out[20]=
{{1, {6, 7}}, {2, {1, 5}}, {3, {2}}, {4, {3, 4, 9}}, {5, {8}}}
Out[21]=
0.563*Second
Out[22]=
True
Have fun decoding this stuff ;-)
Peter