Re: monomials in Graded Lexicographic Order and associated factorials
- To: mathgroup at smc.vnet.net
- Subject: [mg73808] Re: monomials in Graded Lexicographic Order and associated factorials
- From: "er" <erwann.rogard at gmail.com>
- Date: Thu, 1 Mar 2007 06:09:17 -0500 (EST)
- References: <es3ja3$ogi$1@smc.vnet.net>
hi, i've added the complete corrected code below as i'm told it wasnt. it also appears that Internal`DistributedTermList would be helful. Is this feature only for v 5.2? thanks. In[2]:= PowerList[GLO,3,{a,b,c}] Out[2]= \!\({{1}, {a, b, c}, {a\^2, a\ b, a\ c, b\^2, b\ c, c\^2}, {a\^3, a \^2\ b, a\^2\ c, a\ b\^2, a\ b\ c, a\ c\^2, b\^3, b\^2\ c, b\ c\^2, c \^3}}\) In[11]:= FactorialList[GLO,d,3] Out[11]= {{1},{1,1,1},{2,1,1,2,1,2},{6,2,2,2,1,2,6,2,2,6}} GLO/:PowerList[GLO,0,vars_]:={{1}}; GLO/:PowerList[GLO,p_,vars_]:=With[{rev=Reverse[vars]},Join[{{1}},Flatten/ @Map[Reverse,NestList[rev*Flatten/@foldList[#]&,List/@rev,p-1],2]]]; GLO/: FactorialList[GLO,d_,p_]:=Map[Times@@Factorial[#]&,aux[d,p], {2}]; foldList[vec_]:=FoldList[List,First[vec],Rest[vec]]; With[{ maxD=5, maxP}, GLO::max="either p=`1` or d=`2` are greater than package defined maximums:"<>ToString[maxD]<>" and "<>ToString[maxP]; Table[aux[d]=Map[Reverse[Sort[#]] &, Compositions[#, d] & /@ Range[0, maxP], {1}],{d,1,maxD}]; aux[d_/;d<=maxD,p_/;p<=maxP]:=Take[aux[d],p+1]; aux[d_,p_]:=(Message[GLO::max,d,p];$Failed); ]; On Feb 28, 4:50 am, "er" <erwann.rog... at gmail.com> wrote: > hi, > > i just want to share my code below and ask for any suggestion to speed > up the function FactorialList below, > which takes up about as much time to complete as PowerList, mostly due > to function aux. storing a table of values to avoid repeated > computation seems to be the easiest solution. however, i'm hoping to > avoid that, perhaps by exploiting the particular GLO structure. > thanks. > > here's the usage i'm interested in: "PowerList[GDO,max,{x1,...,xD}] > returns { {{x1\^p1*...*xD^pD:|p|=q},q=0,...,max } where |p|=p1+...+pD; > FactorList[GDO,D,max] returns the corresponding mv-factorial terms: > { {p1!*...*pD!:|p|=q},q=0,...,max }", e.g. > > In[1] := PowerList[GLO, 2, {a, b, c}] > FactorialList[GLO, d, 2] > Out[2] = {{1}, {a, b, c}, {a ^ 2, a b, a c, b^ 2, b c, c^ 2}} > Out[2] = {{1}, {1, 1, 1}, {2, 1, 2, 1, 1, 2}} > > code: > GLO/:PowerList[GLO,0,vars_]:={{1}}; > GLO/:PowerList[GLO,p_,vars_]:=With[{rev=Reverse[vars]}, Join[{{1}}, > Flatten/@Map[Reverse, NestList[rev*Flatten/ > @foldList[#]&,List/@rev,p-1],2]] ]; > GLO/: FactorialList[GLO,d_,p_]:=Map[Times@@Factorial[#]&,aux[d,p],{2}];