Re: Triangular Distribution in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg74243] Re: [mg74204] Triangular Distribution in Mathematica
- From: Darren Glosemeyer <darreng at wolfram.com>
- Date: Thu, 15 Mar 2007 05:03:58 -0500 (EST)
- References: <200703140850.DAA25031@smc.vnet.net>
negedea at googlemail.com wrote:
> Dear all,
>
> Does any one know how to use triangular distribution in Mathematica?
> Does any one have an add-in? Or a formula that works? I want to get
> the PDF function, plot and the first four moments, mean, variance,
> skew, kurtosis. I have the following parameters for the distribution
> minimum value 270, maximum 415 and likeliest or mode 392.
>
> Thanking in Adavance,
>
> Negede
>
>
Here is a definition for the triangular distribution pdf along with
computations for the mean, variance, skewness and kurtosis and the plot
command for your particular distribution.
In[1]:= $Post=InputForm;
Out[1]//InputForm= Null
In[2]:= trianglePDF[min_, max_, mode_, x_] :=
Piecewise[{{(2*(-min + x))/((max - min)*(-min + mode)),
min <= x <= mode}, {(2*(max - x))/((max - min)*(max -
mode)),
mode < x <= max}}]
Out[2]//InputForm= Null
In[3]:= mu = Integrate[x*trianglePDF[270, 415, 392, x], {x, 270, 415}]
Out[3]//InputForm= 359
In[4]:= var = Integrate[(x - mu)^2*trianglePDF[270, 415, 392, x], {x, 270,
415}]
Out[4]//InputForm= 6073/6
In[5]:= Integrate[(x - mu)^3*trianglePDF[270, 415, 392, x], {x, 270, 415}]/
var^(3/2)
Out[5]//InputForm= (-493416*Sqrt[6/6073])/30365
In[6]:= Integrate[(x - mu)^4*trianglePDF[270, 415, 392, x], {x, 270, 415}]/
var^2
Out[6]//InputForm= 12/5
In[7]:= Plot[trianglePDF[270, 415, 392, x], {x, 270, 415}]
Darren Glosemeyer
Wolfram Research
- References:
- Triangular Distribution in Mathematica
- From: negedea@googlemail.com
- Triangular Distribution in Mathematica