Re: Triangular Distribution in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg74239] Re: [mg74204] Triangular Distribution in Mathematica
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Thu, 15 Mar 2007 05:01:45 -0500 (EST)
- Reply-to: hanlonr at cox.net
TriangularDistribution/: PDF[TriangularDistribution[xmin_,xmode_,xmax_],x_]:= 2/(xmax-xmin)*(UnitStep[x-xmin]*(x-xmin)/(xmode-xmin)+ UnitStep[x-xmode]*(( xmax-xmin)*(x-xmode))/((xmax-xmode)*(xmin-xmode))- UnitStep[x-xmax]*(xmax-x)/(xmax-xmode)); TriangularDistribution/: CDF[TriangularDistribution[xmin_,xmode_,xmax_],x_]:= -(((xmax-xmode)*UnitStep[x-xmin]*(x-xmin)^2-(xmin-xmode)*UnitStep[ x-xmax]*(UnitStep[xmax-xmin]*(x-xmax)^2+(x-xmin)*(x-2*xmax+xmin)* UnitStep[xmin-xmax])-( xmax-xmin)*UnitStep[x-xmode]*(UnitStep[xmode-xmin]*(x-\ xmode)^2+(x-xmin)*(x+xmin-2*xmode)*UnitStep[xmin-xmode]))/((xmax- xmin)*(xmax-xmode)*(xmin-xmode))) xmin=270; xmax=420; xmode=392; Plot[PDF[TriangularDistribution[xmin,xmode,xmax],x],{x,xmin-20, xmax+20},PlotStyle->Red,PlotRange->All]; Plot[CDF[TriangularDistribution[xmin,xmode,xmax],x],{x,xmin-20, xmax+20},PlotStyle->Red,PlotRange->All]; You could use Piecewise instead of UnitStep. Bob Hanlon ---- negedea at googlemail.com wrote: > Dear all, > > Does any one know how to use triangular distribution in Mathematica? > Does any one have an add-in? Or a formula that works? I want to get > the PDF function, plot and the first four moments, mean, variance, > skew, kurtosis. I have the following parameters for the distribution > minimum value 270, maximum 415 and likeliest or mode 392. > > Thanking in Adavance, > > Negede > >