Re: Triangular Distribution in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg74271] Re: Triangular Distribution in Mathematica
- From: "Valeri Astanoff" <astanoff at gmail.com>
- Date: Thu, 15 Mar 2007 19:18:09 -0500 (EST)
- References: <etb5v7$kho$1@smc.vnet.net>
On 15 mar, 11:08, Bob Hanlon <hanl... at cox.net> wrote: > TriangularDistribution/: > PDF[TriangularDistribution[xmin_,xmode_,xmax_],x_]:= > 2/(xmax-xmin)*(UnitStep[x-xmin]*(x-xmin)/(xmode-xmin)+ > UnitStep[x-xmode]*(( > xmax-xmin)*(x-xmode))/((xmax-xmode)*(xmin-xmode))- > UnitStep[x-xmax]*(xmax-x)/(xmax-xmode)); > > TriangularDistribution/: > CDF[TriangularDistribution[xmin_,xmode_,xmax_],x_]:= > -(((xmax-xmode)*UnitStep[x-xmin]*(x-xmin)^2-(xmin-xmode)*UnitStep[ > x-xmax]*(UnitStep[xmax-xmin]*(x-xmax)^2+(x-xmin)*(x-2*xmax+xmin)* > UnitStep[xmin-xmax])-( > xmax-xmin)*UnitStep[x-xmode]*(UnitStep[xmode-xmin]*(x= -\ > xmode)^2+(x-xmin)*(x+xmin-2*xmode)*UnitStep[xmin-xmode]))/((xmax- > xmin)*(xmax-xmode)*(xmin-xmode))) > > xmin=270; > xmax=420; > xmode=392; > > Plot[PDF[TriangularDistribution[xmin,xmode,xmax],x],{x,xmin-20, > xmax+20},PlotStyle->Red,PlotRange->All]; > > Plot[CDF[TriangularDistribution[xmin,xmode,xmax],x],{x,xmin-20, > xmax+20},PlotStyle->Red,PlotRange->All]; > > You could use Piecewise instead of UnitStep. > > Bob Hanlon > > > > ---- nege... at googlemail.com wrote: > > Dear all, > > > Does any one know how to use triangular distribution in Mathematica? > > Does any one have an add-in? Or a formula that works? I want to get > > the PDF function, plot and the first four moments, mean, variance, > > skew, kurtosis. I have the following parameters for the distribution > > minimum value 270, maximum 415 and likeliest or mode 392. > > > Thanking in Adavance, > > > Negede- Masquer le texte des messages pr=E9c=E9dents - > > - Afficher le texte des messages pr=E9c=E9dents - A piecewise version : TriangularDistribution::usage="TriangularDistribution[a, b, m] represents the triangular distribution with range (a,b) and mode m "; TriangularDistribution/:PDF[TriangularDistribution[a_,b_,m_],x_]:= (2*Piecewise[{{(a-x)/(a-m),a<m<b && a<x<m}, {(b-x)/(b-m),a<m<b && m<x<b}},0])/(b-a) TriangularDistribution /: CDF[TriangularDistribution[a_, b_, m_],x_] := Piecewise[{{0,x<=a}, {(a - x)^2/((a - b)*(a - m)),a<=m<=b && a<=x<=m}, {(a*(b - m) + b*(m - 2*x) + x^2)/((a - b)*(b - m)),a<=m<=b && m<=x<=b}, {1,x>=b}},0]; TriangularDistribution/:Mean[TriangularDistribution[a_,b_,m_]]:= (a+b+m)/3; TriangularDistribution/:Variance[TriangularDistribution[a_,b_,m_]]:= (a^2+b^2-b*m+m^2-a*(b+m))/18; TriangularDistribution/:StandardDeviation[TriangularDistribution[a_,b_,m_]]= := Sqrt[(a^2+b^2-b*m+m^2-a*(b+m))/18]; TriangularDistribution/:Skewness[TriangularDistribution[a_,b_,m_]]:= (Sqrt[2]*(a+b-2*m)*(2*a-b-m)*(a-2*b+m))/ (5*(a^2+b^2-b*m+m^2-a*(b+m))^(3/2)); TriangularDistribution/:Kurtosis[TriangularDistribution[a_,b_,m_]]:= 12/5; TriangularDistribution/:KurtosisExcess[TriangularDistribution[a_,b_,m_]]:= = -3/5;