Re: Definite Integration in Mathematica 2
- To: mathgroup at smc.vnet.net
- Subject: [mg74469] Re: Definite Integration in Mathematica 2
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Thu, 22 Mar 2007 01:15:24 -0500 (EST)
- References: <etqo3f$10i$1@smc.vnet.net>
And here is one case that evaluating first the indefinite integral and then apply the Newton-Leibniz formula is preferable than trust Definite Integration capabillities of Mathematica Integrate[(2 - Sin[x])^(1/4), {x, 1, 4}] N[%] Integrate[(2 - Sin[x])^(1/4), x] Simplify[Limit[%, x -> 4, Direction -> 1] - Limit[%, x -> 1, Direction -> -1]] Chop[N[%]] NIntegrate[(2 - Sin[x])^(1/4), {x, 1, Pi/2, 4}] -((1/ (5*Sqrt[3]*Gamma[7/4]))*(2*I*(5*Sqrt[Pi]*Gamma[5/4]*Hypergeometric2F1[5/4, 1/2, 7/4, 1/3] - 2*Gamma[7/4]*(AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[1]), 2 - Sin[1]]*(2 - Sin[1])^(5/4) + AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[4]), 2 - Sin[4]]*(2 - Sin[4])^(5/4))))) 3=2E3356211372370748 - 2.324008709185599*I (-(4/5))*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[x]), 2 - Sin[x]]*Sec[x]*Sqrt[1 + (1/3)*(-2 + Sin[x])]*(2 - Sin[x])^(5/4)* Sqrt[-1 + Sin[x]] (4*I*(AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[1]), 2 - Sin[1]]*(2 - Sin[1])^(5/4) + AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[4]), 2 - Sin[4]]*(2 - Sin[4])^(5/4)))/(5*Sqrt[3]) 3=2E3356211372370748 3=2E3356211372353624 Interestingly Drop[Expand[Integrate[(2 - Sin[x])^(1/4), {x, 1, 4}]], 1] Chop[N[%]] (8*I*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[1]), 2 - Sin[1]]*(2 - Sin[1])^(1/4))/(5*Sqrt[3]) - (4*I*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[1]), 2 - Sin[1]]*(2 - Sin[1])^(1/4)*Sin[1])/(5*Sqrt[3]) + (8*I*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[4]), 2 - Sin[4]]*(2 - Sin[4])^(1/4))/(5*Sqrt[3]) - (4*I*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[4]), 2 - Sin[4]]*(2 - Sin[4])^(1/4)*Sin[4])/(5*Sqrt[3]) 3=2E3356211372370743 (i.e. ommiting the whole Hypergeometric term) Dimitris =CF/=C7 dimitris =DD=E3=F1=E1=F8=E5: > Hello to all of you! > > Firstly, I apologize for the lengthy post! > Secondly, this post has a close connection with a recent (and well > active!) > thread titled "Integrate" and one old post of mine which was based on > a older > post of David Cantrell. Since there was no response and I do consider > the > subject very fundamental I would like any kind of insight. > > In the section about Proper Integrals in his article, Adamchik > mentions that the Newton-Leibniz formula (i.e. the Fundamental > Theorem of Integral Calculus: Integrate[f[x],{x,a,b}]=F[b]-F[a], > F[x]: an antiderivative), does not hold any longer if the > antiderivative F(x) has singularities in the integration interval > (a,b). > > To demonstrate this, he considers the integral of the function: > > f[x_] = (x^2 + 2*x + 4)/(x^4 - 7*x^2 + 2*x + 17); > > over the interval (0,4). > > Plot[f[x], {x, 0, 4}]; > (*plot to be displayed*) > > The integrand posseses no singularities on the interval (0,4). > > Here is the corresponding indefinite integral > > F[x_] = Simplify[Integrate[f[x], x]] > ArcTan[(1 + x)/(4 - x^2)] > > Substituting limits of integration into F[x] yields an incorrect > result > > Limit[F[x], x -> 4, Direction -> 1] - Limit[F[x], x -> 0, Direction - > >1] > N[%] > NIntegrate[f[x], {x, 0, 4}] > > -ArcTan[1/4] - ArcTan[5/12] > -0.6397697828266257 > 2.501822870767894 > > This is because the antiderivative has a jump discontinuity at x=2 > (also at x = -2), so that the Fundamental theorem cannot be used. > > Indeed > > Limit[F[x], x -> 2, Direction -> #1]&/@{-1, 1} > Show@Block[{$DisplayFunction=Identity}, > Plot[F[x],{x,#[[1]],#[[2]]}]&/@Partition[Range[0,4,2],2,1]]; > {-(Pi/2), Pi/2} > (*plot to be displayed*) > > The right way of applying the Fundamental theorem is the following > > (Limit[F[x], x -> 4, Direction -> 1] - Limit[F[x], x -> 2, Direction - > > -1]) + > (Limit[F[x], x -> 2, Direction -> 1] - Limit[F[x], x -> 0, Direction > -> -1]) > N[%] > Pi - ArcTan[1/4] - ArcTan[5/12] > 2.501822870763167 > > Integrate works in precisely this way > > Integrate[f[x], {x, 0, 4}] > N[%] > > Pi - ArcTan[1/4] - ArcTan[5/12] > 2.501822870763167 > > A little later, he (i.e. Adamchik) says "The origin of > discontinuities > along the path of integration is not in the method of indefinite > integration but rather in the integrand." > > Adamchik mentions next that the four zeros of the integrand's > denominator > are two complex-conjugate pairs having real parts +/- 1.95334. It > then > seems that he is saying that, connecting these conjugate pairs by > vertical line segments in the complex plane, we get two branch > cuts... > > BUT didn't the relevant branch cuts for his int cross the real axis > at x = +/- 2, rather than at x = +/- 1.95334? > > (NOTE: The difference between 1.95334 and 2 is not due to numerical > error). > > Exactly what's going on here? > > Show[GraphicsArray[Block[{$DisplayFunction = Identity}, > (ContourPlot[#1[F[x + I*y]], {x, -4, 4}, {y, -4, 4}, Contours -> 50, > PlotPoints -> 50, ContourShading -> False, Epilog -> {Blue, > AbsoluteThickness[2], Line[{{0, 0}, {4, 0}}]}, > PlotLabel -> #1[HoldForm[F[x]]]] & ) /@ {Re, Im}]], ImageSize > - > 500]; > (*contour plots to be displayed*) > > > Consider next the following function > > f[x_] = 1/(5 + Cos[x]); > > Then > > Integrate[f[x], {x, 0, 4*Pi}] > N[%] > NIntegrate[f[x], {x, 0, 4*Pi}] > > Sqrt[2/3]*Pi > 2.565099660323728 > 2.5650996603270704 > > F[x_] = Integrate[f[x], x] > ArcTan[Sqrt[2/3]*Tan[x/2]]/Sqrt[6] > > D[F[x], x]==f[x]//Simplify > True > > Plot[f[x], {x, 0, 4*Pi}, Ticks -> {Range[0, 4*Pi, Pi/2], Automatic}] > Plot[F[x], {x, 0, 4*Pi}, Ticks -> {Range[0, 4*Pi, Pi/2], Automatic}] > > The antiderivative has jump discontinuities at Pi and 3Pi inside the > integration range > > Table[(Limit[F[x], x -> n*(Pi/2), Direction -> #1] & ) /@ {-1, 1}, {n, > 0, 4}] > {{0, 0}, {ArcTan[Sqrt[2/3]]/Sqrt[6], ArcTan[Sqrt[2/3]]/Sqrt[6]}, {-(Pi/ > (2*Sqrt[6])), Pi/(2*Sqrt[6])}, > {-(ArcTan[Sqrt[2/3]]/Sqrt[6]), -(ArcTan[Sqrt[2/3]]/Sqrt[6])}, {0, > 0}} > > Reduce[5 + Cos[x] == 0 && 0 <= Re[x] <= 4*Pi, x] > {ToRules[%]} /. (x_ -> b_) :> x -> ComplexExpand[b] > x /. %; > ({Re[#1], Im[#1]} & ) /@ %; > poi = Point /@ %; > > x == 2*Pi - ArcCos[-5] || x == 4*Pi - ArcCos[-5] || x == ArcC= os[-5] || > x == 2*Pi + ArcCos[-5] > {{x -> Pi - I*Log[5 - 2*Sqrt[6]]}, {x -> 3*Pi - I*Log[5 - 2*Sqrt[6]]}, > {x -> Pi + I*Log[5 - 2*Sqrt[6]]}, > {x -> 3*Pi + I*Log[5 - 2*Sqrt[6]]}} > > Of course F[4Pi]-F[0]=0 incorrectly. > > The reason for the discrepancy in the above result is not because of > any problem with the fundamental theorem of calculus, of course; it is > caused by the multivalued nature of the indefinite integral arctan. > > > Show[GraphicsArray[Block[{$DisplayFunction = Identity}, > (ContourPlot[#1[F[x + I*y]], {x, 0, 4*Pi}, {y, -4, 4}, Contours -> > 50, PlotPoints -> 50, ContourShading -> False, > FrameTicks -> {Range[0, 4*Pi, Pi], Automatic, None, None}, > Epilog -> {{PointSize[0.03], Red, poi}, > {Blue, Line[{{0, 0}, {4*Pi, 0}}]}}] & ) /@ {Re, Im}]], > ImageSize -> 500] > > So, in this example the discontinuities are indeed from the branch > cuts that start and end from the simple poles of the integrand which > is in agreement with V.A. paper! > > > I think I am not aware of something fundamental! > Can someone point out what I miss? > > > Regards > Dimitris "#FFFFFF"> <tr> <td><table width="644" border="0" cellspacing="0" cellpadding="0"> <tr> <td height="64"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/top_3_mar07.jpg" width="644" height="64"></td> </tr> <tr> <td><table width="644" border="0" cellpadding="0" cellspacing="0" bgcolor="#000000"> <tr> <td height="97" colspan="2"><a href="http://campman1.usa.canon.com/ema/www/r?1000064389.6114.3.kvdilAs5RWz1dJ" target="_blank"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/main_img_01.gif" width="644" height="97" border="0"></a></td> </tr> <tr> <td width="394" rowspan="2"><a href="http://campman1.usa.canon.com/ema/www/r?1000064389.6114.3.kvdilAs5RWz1dJ" target="_blank"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/main_img_02.jpg" width="394" height="304" border="0"></a></td> <td width="250" height="112"><a href="http://campman1.usa.canon.com/ema/www/r?1000064389.6114.3.kvdilAs5RWz1dJ" target="_blank"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/main_img_03.gif" width="250" height="112" border="0"></a></td> </tr> <tr> <td width="250" height="192"><a href="http://campman1.usa.canon.com/ema/www/r?1000064389.6114.3.kvdilAs5RWz1dJ" target="_blank"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/main_img_04.gif" width="250" height="192" border="0"></a></td> </tr> </table></td> </tr> <tr> <td height="4"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/greybar.gif" width="644" height="4"></td> </tr> <tr> <td><table width="644" border="0" cellspacing="0" cellpadding="0"> <tr> <td width="322" height="242"><a href="http://campman1.usa.canon.com/ema/www/r?1000064389.6114.5.x$VipZUb8V$WrS" target="_blank"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/eos5d_ef24-105.jpg" width="322" height="242" border="0"></a></td> <td width="322" height="242"><a href="http://campman1.usa.canon.com/ema/www/r?1000064389.6114.7.AcE1Ouz95w8Xcy" target="_blank"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/eos30d_ef28-135.jpg" width="322" height="242" border="0"></a></td> </tr> <tr> <td height="49" colspan="2"><a href="http://campman1.usa.canon.com/ema/www/r?1000064389.6114.9.VskROexR5HxSA0" target="_blank"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/newlenskit.gif" width="644" height="49" border="0"></a></td> </tr> </table></td> </tr> <tr> <td height="12"><img src="http://www.usa.canon.com/app/emails/eosmarch07/images/greybar.gif" width="644" height="12"></td> </tr> <tr> <td><table width="644" border="0" cellspacing="0" cellpadding="0"> <tr>
- Follow-Ups:
- Re: Re: Definite Integration in Mathematica 2
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: Re: Definite Integration in Mathematica 2