Re: Re: Definite Integration in Mathematica 2
- To: mathgroup at smc.vnet.net
- Subject: [mg74491] Re: [mg74469] Re: Definite Integration in Mathematica 2
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Fri, 23 Mar 2007 19:03:19 -0500 (EST)
- References: <etqo3f$10i$1@smc.vnet.net> <200703220615.BAA17037@smc.vnet.net>
dimitris wrote: > And here is one case that evaluating first the indefinite integral and > then > apply the Newton-Leibniz formula is preferable than trust Definite > Integration > capabillities of Mathematica Only if you subscribe to the dictum "two wrongs make a right". More below. > Integrate[(2 - Sin[x])^(1/4), {x, 1, 4}] > N[%] > Integrate[(2 - Sin[x])^(1/4), x] > Simplify[Limit[%, x -> 4, Direction -> 1] - Limit[%, x -> 1, Direction > -> -1]] > Chop[N[%]] > NIntegrate[(2 - Sin[x])^(1/4), {x, 1, Pi/2, 4}] > > -((1/ > (5*Sqrt[3]*Gamma[7/4]))*(2*I*(5*Sqrt[Pi]*Gamma[5/4]*Hypergeometric2F1[5/4, > 1/2, 7/4, 1/3] - > 2*Gamma[7/4]*(AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[1]), 2 > - Sin[1]]*(2 - Sin[1])^(5/4) + > AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[4]), 2 - Sin[4]]*(2 > - Sin[4])^(5/4))))) > 3=2E3356211372370748 - 2.324008709185599*I > (-(4/5))*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[x]), 2 - > Sin[x]]*Sec[x]*Sqrt[1 + (1/3)*(-2 + Sin[x])]*(2 - Sin[x])^(5/4)* > Sqrt[-1 + Sin[x]] > (4*I*(AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[1]), 2 - Sin[1]]*(2 > - Sin[1])^(5/4) + > AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[4]), 2 - Sin[4]]*(2 - > Sin[4])^(5/4)))/(5*Sqrt[3]) > 3=2E3356211372370748 > 3=2E3356211372353624 > > Interestingly > > Drop[Expand[Integrate[(2 - Sin[x])^(1/4), {x, 1, 4}]], 1] > Chop[N[%]] > > (8*I*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[1]), 2 - Sin[1]]*(2 - > Sin[1])^(1/4))/(5*Sqrt[3]) - > (4*I*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[1]), 2 - Sin[1]]*(2 > - Sin[1])^(1/4)*Sin[1])/(5*Sqrt[3]) + > (8*I*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[4]), 2 - Sin[4]]*(2 > - Sin[4])^(1/4))/(5*Sqrt[3]) - > (4*I*AppellF1[5/4, 1/2, 1/2, 9/4, (1/3)*(2 - Sin[4]), 2 - Sin[4]]*(2 > - Sin[4])^(1/4)*Sin[4])/(5*Sqrt[3]) > 3=2E3356211372370743 > > (i.e. ommiting the whole Hypergeometric term) > > Dimitris > [...] The antiderivative appears to have two singularities on the integration path, one at Pi/2 and one just below 4. I would surmise that latter is some transcendental, and Mathematica fails to find it. So the definite integral misses a jump and is incorrect. The blind application of Newton-Leibniz simply misses both, the jumps happen to cancel, and the result is "correct". But not the method. Daniel Lichtblau Wolfram Research
- References:
- Re: Definite Integration in Mathematica 2
- From: "dimitris" <dimmechan@yahoo.com>
- Re: Definite Integration in Mathematica 2