Re: Minimize[] Problem
- To: mathgroup at smc.vnet.net
- Subject: [mg76342] Re: Minimize[] Problem
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Sun, 20 May 2007 02:24:43 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <f2mfj4$mh1$1@smc.vnet.net>
anguzman at ing.uchile.cl wrote:
> Hello.
>
> Why do I get?
>
> In[4]:=
> Minimize[(x^4-6 x^2+1)^2,{x}]
> Out[4]=
> {1,{x->0}}
>
> when..
>
> In[3]:=
> (x^4-6 x^2+1)^2/.x->1-Sqrt[2]//Simplify
> Out[3]=
>
>
> x=0 is actually a local maximum.
> Any answer will be appreciated.
>
> Atte Andres Guzman
I am afraid this may be a bug in version 5.2. Even with a constraint,
Minimize is unable to find a minimum.
In[1]:=
$Version
Out[1]=
"5.2 for Microsoft Windows (June 20, 2005)"
In[2]:=
Minimize[(x^4 - 6*x^2 + 1)^2, {x}]
Out[2]=
{1, {x -> 0}}
In[3]:=
Simplify[Minimize[{(x^4 - 6*x^2 + 1)^2, x < 0}, {x}]]
Minimize::wksol: Warning: There is no minimum in the region described by
the constraints; returning a result on the boundary. More...
Out[3]=
{1, {x -> 0}}
In[4]:=
Chop[NMinimize[(x^4 - 6*x^2 + 1)^2, {x}]]
Out[4]=
{0, {x -> -0.41421356237309503}}
In[5]:=
Chop[N[Solve[(x^4 - 6*x^2 + 1)^2 == 0, x]]]
Out[5]=
{{x -> -2.414213562373095},
{x -> -2.414213562373095},
{x -> -0.41421356237309515},
{x -> -0.41421356237309515},
{x -> 0.41421356237309515},
{x -> 0.41421356237309515},
{x -> 2.414213562373095}, {x -> 2.414213562373095}}
The behavior of Minimize is correct in version 6.0.
In[1]:= $Version
Out[1]= "6.0 for Microsoft Windows (32-bit) (April 28, 2007)"
In[2]:= Minimize[(x^4 - 6*x^2 + 1)^2, {x}]
Out[2]= {(1 - 6*(-1 - Sqrt[2])^2 + (-1 - Sqrt[2])^4)^2, {x -> -1 -
Sqrt[2]}}
In[3]:= Simplify[Minimize[(x^4 - 6*x^2 + 1)^2, {x}]]
Out[3]= {0, {x -> -1 - Sqrt[2]}}
In[4]:= Simplify[Minimize[{(x^4 - 6*x^2 + 1)^2, x > 0}, {x}]]
Out[4]= {0, {x -> -1 + Sqrt[2]}}
Regards,
Jean-Marc