[Q] Nonlinear Fitting in symbolic Integration ..?
- To: mathgroup at smc.vnet.net
- Subject: [mg82842] [Q] Nonlinear Fitting in symbolic Integration ..?
- From: hwoarang <kjwan at kaist.ac.kr>
- Date: Thu, 1 Nov 2007 05:12:02 -0500 (EST)
Dear Mathgroup, I have experiment data and am trying to fit data to convoluted equation. The equation contains UnitStep and symbolic Integrate function. I think that these functions have some compolited problems according to searching about related problems in archives. But still, I have no idea whether the problem is in UnitStep, symbolic Integrate or NonlinearRegress.. -_-. Does anybody out there have any ideas for this ? Any help would be appreciated. I pasted math code. Sincerely, yours Hwoarang. Math Code : ----------------------------------------------------------------------------- Remove["Global`*"]; << "Statistics`NonlinearFit`" k0 = 1; k1 =. ; k2 =. ; tau1 =. ; tau2 =. ; response[t_, x_] := (UnitStep[t - x]*{k2*(1 - E^(-((t - x)/tau2))) + (k1*(1 - E^(-((t - x)/tau1))))/E^((t - x)/tau2)})/E^(x^2/(2*0.1^2)) convol[t_] = Integrate[(k0*response[t, x])/(2*Pi*0.1^0.5), {x, -1, 0}, Assumptions -> {{t, k1, k2, tau1, tau2} ¡ô Reals && t > 0 && tau1 > 0 && tau2 > 0 && k1 > 0 && k2 > 0}, GenerateConditions -> False] + Integrate[(k0*response[t, x])/(2*Pi*0.1^0.5), {x, 0, 20}, Assumptions -> {{t, k1, k2, tau1, tau2} ¡ô Reals && t > 0 && tau1 > 0 && tau2 > 0 && k1 > 0 && k2 > 0}, GenerateConditions -> False] dat = Import["Reflsmooth.txt", "Table"]; ListPlot[dat]; NonlinearRegress[dat, convol, t, {{k1, 0.4, 0.35, 0.45}, {k2, 0.04, 0.035, 0.045}, {tau1, 0.35, 0.3, 0.4}, {tau2, 0.25, 0.2, 0.3}}, ShowProgress -> True] -------------------------------------------------------------------------- Jiwan Kim, Ph. D. Candidate, Dept. of Physics and Center for Nanospinics of Spintronic Materials, KAIST 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea Tel: +82-42-869-8163 Cel: +82-16-870-7419 Fax: +82-42-869-8162 E-mail: hwoarang at kaist.ac.kr
- Follow-Ups:
- Re: [Q] Nonlinear Fitting in symbolic Integration ..?
- From: Darren Glosemeyer <darreng@wolfram.com>
- Re: [Q] Nonlinear Fitting in symbolic Integration ..?