Re: two graph problems in Adjacency types
- To: mathgroup at smc.vnet.net
- Subject: [mg99630] Re: two graph problems in Adjacency types
- From: "Sjoerd C. de Vries" <sjoerd.c.devries at gmail.com>
- Date: Sun, 10 May 2009 05:12:47 -0400 (EDT)
- References: <gtudk6$j0j$1@smc.vnet.net>
Assuming you are on version 7 the following cleaned-up code should generate all the graphs and plots you want. I left the definition of g2 out for the sake of clarity, but it should be included before its usage of course. g = {1 -> 2, 1 -> 4, 1 -> 5, 1 -> 9, 2 -> 1, 2 -> 3, 2 -> 6, 2 -> 10, 3 -> 2, 3 -> 4, 3 -> 7, 3 -> 10, 4 -> 1, 4 -> 3, 4 -> 8, 4 -> 12, 5 -> 1, 5 -> 6, 5 -> 8, 5 -> 9, 6 -> 2, 6 -> 5, 6 -> 7, 6 -> 10, 7 -> 3, 7 -> 6, 7 -> 8, 7 -> 11, 8 -> 4, 8 -> 5, 8 -> 7, 8 -> 12, 9 -> 1, 9 -> 5, 9 -> 10, 9 -> 12, 10 -> 2, 10 -> 6, 10 -> 9, 10 -> 11, 11 -> 3, 11 -> 7, 11 -> 10, 11 -> 12, 12 -> 4, 12 -> 8, 12 -> 9, 12 -> 11}; GraphPlot[g, EdgeRenderingFunction -> (Arrow[#1] &)] Needs["Combinatorica`"] g3 = ConstantArray[0, {12, 12}]; Scan[(g3[[#[[1]], #[[2]]]] = 1) &, g] ShowGraph[FromAdjacencyMatrix[ g3]] << ComputationalGeometry` PlanarGraphPlot[g2] DiagramPlot[g2] Cheers -- Sjoerd On May 7, 12:36 pm, Roger Bagula <rlbag... at sbcglobal.net> wrote: > I have two graph handling problems: > > 1) ToAdjacencyMatrix > > g below works with: > << DiscreteMath`GraphPlot`; > g = { 1 -> 2, 1 -> 4, 1 -> 5, 1 -> > 9, 2 -> 1, 2 -> 3, 2 -> 6, 2 -> 10, 3 -> 2, 3 -> 4, > 3 -> 7, 3 -> 10, 4 -> 1, 4 -> 3, 4 -> 8, 4 -> 12, 5 -> 1, 5 -> > 6, 5 -> 8, 5 -> 9, 6 -> 2, 6 -> 5, 6 -> 7, 6 -> 10, 7 -> 3,= 7 -> 6, > 7 -> 8, 7 -> 11, 8 -> 4, 8 -> 5, 8 -> 7, 8 -> 12, 9 -> 1, 9 -> 5, > 9 -> 10, 9 -> 12, 10 -> 2, 10 -> 6, 10 -> 9, 10 -> 11, 11 -> 3, > 11 -> 7, 11 -> 10, 11 -> 12, 12 -> 4, 12 -> 8, 12 -> 9, 12 -> = 11}; > GraphPlot[g, "EdgeStyleFunction" -> (Arrow[{#1, #2}] &)]; > > 2) FromAdjacencyList > > g2 below works with: > << DiscreteMath`ComputationalGeometry` > PlanarGraphPlot[g2, TextStyle -> {"FontSize" -> 8}] > DiagramPlot[g2] > > 1) Mathematica: > > << DiscreteMath`ComputationalGeometry` > << DiscreteMath`Combinatorica` > g = { 1 -> 2, 1 -> 4, 1 -> 5, 1 -> 9, 2 -> 1, 2 -> 3, 2 -> 6, 2 -> 10, = 3 -> > 2, 3 -> 4, 3 -> 7, 3 -> 10, 4 -> 1, 4 -> 3, > 4 -> 8, 4 -> 12, 5 -> 1, 5 -> 6, 5 -> 8, 5 -> 9, 6 -> 2, 6 -> = 5, 6 -> > 7, 6 -> 10, 7 -> 3, 7 -> 6, 7 -> 8, 7 -> 11, 8 -> 4, 8 -> 5, 8= -> > 7, 8 -> 12, 9 -> 1, 9 -> 5, 9 -> 10, 9 -> 12, 10 -> 2, 10 -> 6, > 10 -> 9, 10 -> 11, 11 -> 3, 11 -> 7, 11 -> 10, 11 -> > 12, 12 -> 4, 12 -> 8, 12 -> 9, 12 -> 11}; > ShowGraph[g] > ToAdjacencyMatrix[g] > > 2) Mathematica: > > Needs["Combinatorica`"] > g2 = {{-0.9280755637296179`, -0.19419929835443286`}, > {-0.9280755637296179`, \ > 0.19419929835443286`}, {-0.6501667625820613`, -0.2919430658415227`}, \ > {-0.6501667625820613`, 0.2919430658415227`}, {-0.48283076848225387`, \ > -0.11693236237728927`}, {-0.48283076848225387`, 0.11693236237728927`}, \ > {-1.1392923850800492`, -0.46926092334332986`}, {-1.1392923850800492`, \ > 0.46926092334332986`}, {-1.4197713561114567`, 0}, {-0.4785669339713638`, = \ > -0.5281299674972387`}, {-0.4785669339713638`, > 0.5281299674972387`}, {-0.2866442761736428`, > -0.20825925704946527`}, \ > {-0.2866442761736428`, 0.20825925704946527`}, {-0.7983543675400564`, \ > -0.9385218466866597`}, {-0.7983543675400564`, 0.9385218466866597`}, \ > {-0.4714856294164916`, -0.8226414290121405`}, {-0.4714856294164916`, \ > 0.8226414290121405`}, {-0.2604121980728394`, -0.423065261465852`}, \ > {-0.2604121980728394`, 0.423065261465852`}, {-1.2647924812445637`, 0}, \ > {-0.129178585243926`, -0.093853735887278`}, {-0.129178585243926`, > 0.093853735887278`}, {-0.43873347716520544`, > -1.350282799879008`}, \ > {-0.43873347716520544`, 1.350282799879008`}, {-0.1020966130966314`, \ > -0.9426631959865617`}, {-0.3908423710622271`, -1.2028891310487582`}, \ > {-0.3908423710622271`, 1.2028891310487582`}, {-0.1020966130966314`, \ > 0.9426631959865617`}, {-0.03799362766342498`, -0.49533343579983613`}, \ > {-0.03799362766342498`, 0.49533343579983613`}, {0.09423295043665249`, \ > -1.2285410469049964`}, {0.09423295043665249`, 1.2285410469049964`}, \ > {0.07674177634016656`, -0.7085607049671481`}, {0.04934182894455409`, \ > -0.15185853463677154`}, {0.04934182894455409`, 0.15185853463677154`}, \ > {0.07674177634016656`, 0.7085607049671481`}, {0.10948837081771987`, \ > -0.3369705563778359`}, {0.10948837081771987`, 0.3369705563778359`}, \ > {1.0232386116845091`, -0.743426367685959`}, {1.0232386116845091`, \ > 0.743426367685959`}, {0.15967351259874374`, 0}, {0.6458822508733686`, \ > -1.0492993237800035`}, {0.6458822508733686`, 1.0492993237800035`}, \ > {0.3543961314959318`, -0.6183453362321933`}, {0.3543961314959318`, \ > 0.6183453362321933`}, {0.32188717898816915`, -0.3784010734225469`}, \ > {0.32188717898816915`, 0.3784010734225469`}, {1.148619155220934`, \ > -0.8345206647495994`}, {1.148619155220934`, 0.8345206647495994`}, \ > {0.6366814195430888`, -0.7026196620377195`}, {0.6366814195430888`, \ > 0.7026196620377195`}, {0.35431181071184575`, 0}, {0.4593494152303489`, \ > -0.18920053671127346`}, {0.4593494152303489`, 0.18920053671127346`}, \ > {1.1975315513100848`, -0.2900192002183368`}, {1.1975315513100848`, \ > 0.2900192002183368`}, {0.8649763866996519`, -0.38839859670886573`}, \ > {0.8649763866996519`, 0.38839859670886573`}, {0.6975957887173267`, \ > -0.14597153292076134`}, {0.6975957887173267`, 0.14597153292076134`}}; > > FromAdjacencyLists[g2]