Re: Solving integral equations numerically
- To: mathgroup at smc.vnet.net
- Subject: [mg100067] Re: Solving integral equations numerically
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Fri, 22 May 2009 01:51:36 -0400 (EDT)
- Organization: Uni Leipzig
- References: <gv2jgr$977$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, for what do you need NIntegrate[] ? Your first integral Integrate[T^2*Exp[-ta/T], {x, 0, l}] -> (l*T^2)/E^(ta/T) and you second one Integrate[T^2*Exp[-ta/T]*x, {x, 0, l/2}] -> (l^2*T^2)/(8*E^(ta/T)) if I have overlooked something, usual a definition like I1[qref_?NumericQ] := (RCOM + RS0)*w*qref*Exp[ta/273]/273^2* NIntegrate[T^2*Exp[-ta/T], {x, 0, l}] I2[qref_?NumericQ] := (RS/l)*w*qref*Exp[ta/273]/273^2* NIntegrate[T^2*Exp[-ta/T]*x, {x, 0, l/2}] FindRoot[{Tlo == T0 + I1[qref], T0^2/ta == Tlo + I2[qref]}, {{Tlo, 270}, {qref, 300}}] should be sufficient. Regards Jens viehhaus wrote: > Hi, > > I'm trying to solve a set of two integral equations, which don't have an analytic solution, so I'm using NIntegrate and FindRoot > > nodes = 11 (*number of nodes*) > RCOM = 2.17 (* common resistance *) > RS0 = 0.1 (*off-sensor resistance for sensor*) > RS = 1.1 (*sensor resistance pre node*) > Ph = 6 (*hybrid power in W*) > tcool = -25 (*coolant temperature (degC) *) > ta = 1.2/2/0.0000862 (*activation temperature (K) *) > l = 63.56/1000(*length of thermal path*) > w = 128.05/1000(*width of thermal path*) > T0 = 273 + tcool + Ph*RCOM > T = 4/3*(Tlo - T0^2/ta)*(x^2/l^2 - 2*x/l) + Tlo (*parabolic temperature function in sensor*) > I1 = (RCOM + RS0)*w*qref*Exp[ta/273]/273^2*NIntegrate[T^2*Exp[-ta/T], {x, 0, l}] > I2 = (RS/l)*w*qref*Exp[ta/273]/273^2*NIntegrate[T^2*Exp[-ta/T]*x, {x, 0, l/2}] > FindRoot[{Tlo == T0 + I1, T0^2/ta == Tlo + I2}, {{Tlo, 270}, {qref, 300}}] > > but I get errors like "... has evaluated to non-numerical values for all sampling points in the region with boundaries {{0,0.06356}}..." and FindRoot does not move. Any idea what I'm doing wrong? > > Cheers, Georg >