DSolve second order ODE wrong solution
- To: mathgroup at smc.vnet.net
- Subject: [mg115009] DSolve second order ODE wrong solution
- From: Alberto Verga <Alberto.Verga at laposte.net>
- Date: Tue, 28 Dec 2010 06:50:11 -0500 (EST)
DSolve[] fails solving this second order, constant coefficients, differential equation: In[21]:= deq = D[f[x], {x, 2}] + 2 D[f[x], x] + (1 + a^2) f[x] == 0 Out[21]= (1 + a^2) f[x] + 2 Derivative[1][f][x] + (f^\[Prime]\[Prime])[x] == 0 In[22]:= sol = DSolve[deq, f, x] Out[22]= {{f -> Function[{x}, C[2] Cos[(I + a) x] + C[1] Sin[(-I + a) x]]}} In[24]:= deq /. sol // FullSimplify Out[24]= {E^(x - I a x) ((-I + a) E^(2 I a x) C[1] + C[2] - I a C[2]) == 0} The correct result is, In[31]:= correct = {f -> Function[x, c[1] Exp[-I (-I + a) x] + c[2] Exp[I (I + a) x]]} Out[31]= {f -> Function[x, c[1] Exp[-I (-I + a) x] + c[2] Exp[I (I + a) x]]} In[32]:= deq /. correct // FullSimplify Out[32]= True or equivalently: In[33]:= correct1 = {f -> Function[x, c[1] Exp[-x] Sin[a x + c[2]]]} Out[33]= {f -> Function[x, c[1] Exp[-x] Sin[a x + c[2]]]} In[34]:= deq /. correct1 // FullSimplify Out[34]= True However, changing the coefficient 1+a^2=b, gives In[36]:= deqb = D[f[x], {x, 2}] + 2 D[f[x], x] + b f[x] == 0; solb = DSolve[deqb, f, x]; deqb /. solb // FullSimplify Out[38]= {True} Thanks!