need your help!
- To: mathgroup at smc.vnet.net
- Subject: [mg109714] need your help!
- From: Ben <berihut at gmail.com>
- Date: Thu, 13 May 2010 07:24:37 -0400 (EDT)
Dear Sir, My name is Berihu Teklu. Currently I'm doing a research about propagation of entanglement in channel described by structured reservoirs. I'm working with Mathematica (version 6.0) . And now I have a problem, I try to plot an equation at the end in the attached mathematica file (which is in my case Entanglement of Formation). And even after hours of working I don't get any plot. This is thus to kindly request, if you could write me any comments on my attached mathematica notebooks. Your quick reply would be highly appreciative. In[1]:= s[\[Omega]_, t_] = FullSimplify[ Integrate[ Sin[\[Omega] \[Tau]] Sin[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] Out[1]= (\[Omega]0 Cos[t \[Omega]0] Sin[t \[Omega]] - \[Omega] Cos[ t \[Omega]] Sin[t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2) In[2]:= c[\[Omega]_, t_] = FullSimplify[ Integrate[ Cos[\[Omega] \[Tau]] Cos[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] d[\[Omega]_, t_] = FullSimplify[ Integrate[ Cos[\[Omega] \[Tau]] Sin[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] Out[2]= (\[Omega] Cos[t \[Omega]0] Sin[t \[Omega]] - \[Omega]0 Cos[ t \[Omega]] Sin[t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2) Out[3]= (-\[Omega]0 + \[Omega]0 Cos[t \[Omega]] Cos[ t \[Omega]0] + \[Omega] Sin[t \[Omega]] Sin[ t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2) Jpbg[\[Omega]_] = If[\[Omega] > 0, 1/Sqrt[\[Omega]], 0]; J1[\[Alpha]_, \[Omega]0_, t_] = FullSimplify[ Integrate[ \[Alpha]^2/ Sqrt[\[Omega]]*(\[Omega] Cos[t \[Omega]0] Sin[ t \[Omega]] - \[Omega]0 Cos[t \[Omega]] Sin[ t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2), {\[Omega], 0, \[Infinity]}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, t > 0}], {\[Alpha] > 0, \[Omega]0 > 0, \[Omega] > 0, t > 0}]; \[CapitalDelta][\[Alpha]_, \[Omega]0_, t_] := Re[Simplify[J1[\[Alpha], \[Omega]0, t]]]; In[7]:= \[CapitalDelta][0.1, 0.5, 0.1, 5.] Out[7]= 0.199423 J2[\[Alpha]_, \[Omega]0_] = FullSimplify[ Integrate[ \[Alpha]^2/ Sqrt[\[Omega]]*-\[Omega]0/(\[Omega]^2 - \[Omega]0^2), {\[Omega], 0, \[Infinity]}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, \[Lambda] > 0}], {\[Alpha] > 0, \[Omega]0 > 0}]; J3[\[Alpha]_, \[Omega]0_, t_] = FullSimplify[ Integrate[ \[Alpha]^2/ Sqrt[\[Omega]]*(\[Omega]0 Cos[t \[Omega]] Cos[ t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2), {\[Omega], 0, \[Infinity]}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, t > 0}], {\[Alpha] > 0, \[Omega]0 > 0, t > 0}]; During evaluation of In[8]:= Integrate::idiv: Integral of 1/((\ \[Lambda]^2+\[Omega]^2) (\[Omega]^2-\[Omega]0^2)) does not converge \ on {0,\[Infinity]}. >> J4[\[Alpha]_, \[Omega]0_, t_] = FullSimplify[ Integrate[ \[Alpha]^2/ Sqrt[\[Omega]]*(\[Omega] Sin[t \[Omega]] Sin[ t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2), {\[Omega], 0, \[Infinity]}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, t > 0}], {\[Alpha] > 0, \[Omega]0 > 0, t > 0}]; \[CapitalPi][\[Alpha]_, \[Omega]0_, t_] := Re[Simplify[ J2[\[Alpha], \[Omega]0] + J3[\[Alpha], \[Omega]0, t] + J4[\[Alpha], \[Omega]0, t]]]; In[12]:= \[CapitalPi][0.1, 0.5, 0.1, 5.] Out[12]= 0.42693 J5[\[Alpha]_, \[Omega]0_, \[Lambda]_, t_] = FullSimplify[ Integrate[ \[Alpha]^2/ Sqrt[\[Omega]]*(\[Omega]0 Cos[t \[Omega]0] Sin[ t \[Omega]] - \[Omega] Cos[t \[Omega]] Sin[ t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2), {\[Omega], 0, \[Infinity]}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, \[Lambda] > 0, t > 0}], {\[Alpha] > 0, \[Omega]0 > 0, \[Lambda] > 0, t > 0}]; \[Gamma][\[Alpha]_, \[Omega]0_, t_] := Re[Simplify[J5[\[Alpha], \[Omega]0, t]]]; In[15]:= \[Gamma][0.1, 0.5, 0.1, 5.] Out[15]= 0.168173 \[CapitalGamma][\[Alpha]_, \[Omega]0_, t_] = FullSimplify[ Integrate[2*\[Gamma][\[Alpha], \[Omega]0, s], {s, 0, t}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0}], {\[Alpha] > 0, \[Omega]0 > 0}]; Subscript[\[CapitalDelta], \[CapitalGamma]][\[Alpha]_, \[Omega]0_, t_] = FullSimplify[ Integrate[J1[\[Alpha], \[Omega]0, s], {s, 0, t}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0}], {\[Alpha] > 0, \[Omega]0 > 0}]; In[18]:= Subscript[\[CapitalDelta], \[CapitalGamma]][0.1, 0.5, 0.1, \ 5.] Out[18]= 1.04639 \[CapitalDelta]co[\[Alpha]_, \[Omega]0_, t_] = Re[FullSimplify[ Integrate[ J1[\[Alpha], \[Omega]0, s]*Cos[2 \[Omega]0 (t - s)], {s, 0, t}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, t > 0}], {\[Alpha] > 0, \[Omega]0 > 0, t > 0}]]; \[CapitalDelta]si[\[Alpha]_, \[Omega]0_, t_] = Re[FullSimplify[ Integrate[ J1[\[Alpha], \[Omega]0, s]*Sin[2 \[Omega]0 (t - s)], {s, 0, t}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, \[Lambda] > 0, t > 0}], {\[Alpha] > 0, \[Omega]0 > 0, t > 0}]]; \[CapitalPi]co[\[Alpha]_, \[Omega]0_, t_] = Re[FullSimplify[ Integrate[(J2[\[Alpha], \[Omega]0, s] + J3[\[Alpha], \[Omega]0, s] + J4[\[Alpha], \[Omega]0, s])* Cos[2 \[Omega]0 (t - s)], {s, 0, t}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, t > 0}], {\[Alpha] > 0, \[Omega]0 > 0, \[Lambda] > 0, t > 0}]]; \[CapitalPi]si[\[Alpha]_, \[Omega]0_, t_] = Re[FullSimplify[ Integrate[(J2[\[Alpha], \[Omega]0, s] + J3[\[Alpha], \[Omega]0, s] + J4[\[Alpha], \[Omega]0, s])* Sin[2 \[Omega]0 (t - s)], {s, 0, t}, Assumptions -> {\[Alpha] > 0, \[Omega]0 > 0, t > 0}], {\[Alpha] > 0, \[Omega]0 > 0, t > 0}]]; Out[22]= $Aborted \[CapitalDelta]co[0.1, 0.5, 0.1, 5.] -0.198356 - 1.08996*10^-17 \[ImaginaryI] \[CapitalDelta]si[0.1, 0.5, 0.1, 5.] 0.404226+ 0. \[ImaginaryI] \[CapitalPi]co[0.1, 0.5, 0.1, 5.] 0.148022- 5.29091*10^-17 \[ImaginaryI] \[CapitalPi]si[0.1, 0.5, 0.1, 5.] 0.54091- 5.42101*10^-17 \[ImaginaryI] Clear[A0] A0[r_] = {{Cosh[2 r], 0}, {0, Cosh[2 r]}}; B0 = {{b, 0}, {0, b}}; Clear[At] At[\[Alpha]_, \[Omega]0_, t_, r_] := Re[A0[r] + {{Subscript[\[CapitalDelta], \[CapitalGamma]][\[Alpha], \ \[Omega]0, t] + (\[CapitalDelta]co[\[Alpha], \[Omega]0, t] - \[CapitalDelta]si[\[Alpha], \[Omega]0, t]), -(\[CapitalDelta]si[\[Alpha], \[Omega]0, t] - \[CapitalPi]co[\[Alpha], \[Omega]0, t])}, {-(\[CapitalDelta]si[\[Alpha], \[Omega]0, t] - \[CapitalPi]co[\[Alpha], \[Omega]0, t]), Subscript[\[CapitalDelta], \[CapitalGamma]][\[Alpha], \[Omega]0, t] - (\[CapitalDelta]co[\[Alpha], \[Omega]0, t] - \[CapitalDelta]si[\[Alpha], \[Omega]0, t])}}]; MatrixForm[ArrayFlatten[At[0.1, 0.5, 0.1, 5., 1.]]] \!\(\* TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"4.206008542870848`", RowBox[{"-", "0.25620413800854397`"}]}, { RowBox[{"-", "0.25620413800854397`"}], "5.411172395695137`"} }, GridBoxAlignment->{ "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]\) Ct[\[Omega]0_, t_, r_] = ArrayFlatten[{{Sinh[2 r]/2 Cos [2 \[Omega]0 t], Sinh[2 r]/2 Sin [2 \[Omega]0 t]}, {Sinh[2 r]/2 Cos [ 2 \[Omega]0 t], -Sinh[2 r]/2 Cos [2 \[Omega]0 t]}}]; MatrixForm[ArrayFlatten[Ct[0.1, 5., 1.]]] \[Sigma]t[\[Alpha]_, \[Omega]0_, t_, r_] = ArrayFlatten[{At[\[Alpha], \[Omega]0, t, r], Ct[\[Omega]0, t, r]}, {Transpose[Ct[\[Omega]0, t, r]], At[\[Alpha], \[Omega]0, t, r]}]; MatrixForm[ArrayFlatten[\[Sigma]t[0.1, 0.5, 5., 1.]]] Subscript[I, 1] = Simplify[Det[ At[\[Alpha], \[Omega]0, t, r]], {\[Alpha] > 0, \[Omega]0 > 0, t > 0, r > 0}] Subscript[I, 3] = Simplify[Det[Ct[\[Omega]0, t, r]], {\[Omega]0 > 0, t > 0, r > 0}] Subscript[I, 4] = Simplify[Det[\[Sigma]t[\[Alpha], \[Omega]0, t, r]], {\[Alpha] > 0, \[Omega]0 > 0, t > 0, r > 0}]; Subscript[C, +] = Simplify[Sqrt[( Subscript[I, 1]^2 + Subscript[I, 3]^2 - Subscript[I, 4] + Sqrt[(Subscript[I, 1]^2 + Subscript[I, 3]^2 - Subscript[I, 4])^2 - (2 Subscript[I, 1]*Subscript[I, 3])^2 ])/( 2 Subscript[I, 1])]]; Subscript[C, -] = Simplify[Sqrt[( Subscript[I, 1]^2 + Subscript[I, 3]^2 - Subscript[I, 4] - Sqrt[(Subscript[I, 1]^2 + Subscript[I, 3]^2 - Subscript[I, 4])^2 - (2 Subscript[I, 1]*Subscript[I, 3])^2 ])/( 2 Subscript[I, 1])]]; Subscript[a, n] = Simplify[Sqrt[Subscript[I, 1]]]; Subscript[\[Kappa], -] = Simplify[ Sqrt[(Subscript[a, n] - Subscript[C, +])*(Subscript[a, n] - Subscript[C, -])]]; Subscript[x, m] = Simplify[(Subscript[\[Kappa], -]^2 + 1/4)/( 2 Subscript[\[Kappa], -])]; Subscript[E, F][\[Alpha]_, \[Omega]0_, \[Lambda]_, t_, r_] := Re[(Subscript[x, m] + 1/2) ln [ Subscript[x, m] + 1/2] - (Subscript[x, m] - 1/2) ln [ Subscript[x, m] - 1/2]]; Subscript[E, F][0.1, 0.5, 5., 1.] Plot[Subscript[E, F][0.1, 0.5, t, 1.], {t, 0, 5}]