Re: need your help!
- To: mathgroup at smc.vnet.net
- Subject: [mg109802] Re: need your help!
- From: dh <dh at metrohm.com>
- Date: Tue, 18 May 2010 02:14:06 -0400 (EDT)
- References: <hsgnhg$d3r$1@smc.vnet.net>
Hi, I would guess that the problem is not with Plot but with your function. Try if you function returns numeric values for some specific input. Probably you will then see what is wrong. cheers, Daniel Am 13.05.2010 13:24, schrieb Ben: > In[1]:= s[\[Omega]_, t_] = > FullSimplify[ > Integrate[ > Sin[\[Omega] \[Tau]] Sin[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] > > Out[1]= (\[Omega]0 Cos[t \[Omega]0] Sin[t \[Omega]] - \[Omega] Cos[ > t \[Omega]] Sin[t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2) > > In[2]:= c[\[Omega]_, t_] = > FullSimplify[ > Integrate[ > Cos[\[Omega] \[Tau]] Cos[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] > d[\[Omega]_, t_] = > FullSimplify[ > Integrate[ > Cos[\[Omega] \[Tau]] Sin[\[Omega]0 \[Tau]], {\[Tau], 0, t}]] > > Out[2]= (\[Omega] Cos[t \[Omega]0] Sin[t \[Omega]] - \[Omega]0 Cos[ > t \[Omega]] Sin[t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2) > > Out[3]= (-\[Omega]0 + \[Omega]0 Cos[t \[Omega]] Cos[ > t \[Omega]0] + \[Omega] Sin[t \[Omega]] Sin[ > t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2) > > Jpbg[\[Omega]_] = If[\[Omega]> 0, 1/Sqrt[\[Omega]], 0]; > > J1[\[Alpha]_, \[Omega]0_, t_] = > FullSimplify[ > Integrate[ \[Alpha]^2/ > Sqrt[\[Omega]]*(\[Omega] Cos[t \[Omega]0] Sin[ > t \[Omega]] - \[Omega]0 Cos[t \[Omega]] Sin[ > t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2), {\[Omega], > 0, \[Infinity]}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, t> 0}], {\[Alpha]> > 0, \[Omega]0> 0, \[Omega]> 0, t> 0}]; > > > \[CapitalDelta][\[Alpha]_, \[Omega]0_, t_] := > Re[Simplify[J1[\[Alpha], \[Omega]0, t]]]; > > In[7]:= \[CapitalDelta][0.1, 0.5, 0.1, 5.] > > Out[7]= 0.199423 > > J2[\[Alpha]_, \[Omega]0_] = > FullSimplify[ > Integrate[ \[Alpha]^2/ > Sqrt[\[Omega]]*-\[Omega]0/(\[Omega]^2 - \[Omega]0^2), {\[Omega], > 0, \[Infinity]}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, \[Lambda]> > 0}], {\[Alpha]> 0, \[Omega]0> 0}]; > J3[\[Alpha]_, \[Omega]0_, t_] = > FullSimplify[ > Integrate[ \[Alpha]^2/ > Sqrt[\[Omega]]*(\[Omega]0 Cos[t \[Omega]] Cos[ > t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2), {\[Omega], > 0, \[Infinity]}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, t> 0}], {\[Alpha]> > 0, \[Omega]0> 0, t> 0}]; > > > During evaluation of In[8]:= Integrate::idiv: Integral of 1/((\ > \[Lambda]^2+\[Omega]^2) (\[Omega]^2-\[Omega]0^2)) does not converge \ > on {0,\[Infinity]}.>> > > J4[\[Alpha]_, \[Omega]0_, t_] = > FullSimplify[ > Integrate[ \[Alpha]^2/ > Sqrt[\[Omega]]*(\[Omega] Sin[t \[Omega]] Sin[ > t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2), {\[Omega], > 0, \[Infinity]}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, t> 0}], {\[Alpha]> > 0, \[Omega]0> 0, t> 0}]; > > > \[CapitalPi][\[Alpha]_, \[Omega]0_, t_] := > Re[Simplify[ > J2[\[Alpha], \[Omega]0] + J3[\[Alpha], \[Omega]0, t] + > J4[\[Alpha], \[Omega]0, t]]]; > > In[12]:= \[CapitalPi][0.1, 0.5, 0.1, 5.] > > Out[12]= 0.42693 > > J5[\[Alpha]_, \[Omega]0_, \[Lambda]_, t_] = > FullSimplify[ > Integrate[ \[Alpha]^2/ > Sqrt[\[Omega]]*(\[Omega]0 Cos[t \[Omega]0] Sin[ > t \[Omega]] - \[Omega] Cos[t \[Omega]] Sin[ > t \[Omega]0])/(\[Omega]^2 - \[Omega]0^2), {\[Omega], > 0, \[Infinity]}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, \[Lambda]> 0, > t> 0}], {\[Alpha]> 0, \[Omega]0> 0, \[Lambda]> 0, t> 0}]; > > \[Gamma][\[Alpha]_, \[Omega]0_, t_] := > Re[Simplify[J5[\[Alpha], \[Omega]0, t]]]; > > In[15]:= \[Gamma][0.1, 0.5, 0.1, 5.] > > Out[15]= 0.168173 > > \[CapitalGamma][\[Alpha]_, \[Omega]0_, t_] = > FullSimplify[ > Integrate[2*\[Gamma][\[Alpha], \[Omega]0, s], {s, 0, t}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0}], {\[Alpha]> > 0, \[Omega]0> 0}]; > > Subscript[\[CapitalDelta], \[CapitalGamma]][\[Alpha]_, \[Omega]0_, > t_] = FullSimplify[ > Integrate[J1[\[Alpha], \[Omega]0, s], {s, 0, t}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0}], {\[Alpha]> > 0, \[Omega]0> 0}]; > > In[18]:= Subscript[\[CapitalDelta], \[CapitalGamma]][0.1, 0.5, 0.1, \ > 5.] > > Out[18]= 1.04639 > > > \[CapitalDelta]co[\[Alpha]_, \[Omega]0_, t_] = > Re[FullSimplify[ > Integrate[ > J1[\[Alpha], \[Omega]0, s]*Cos[2 \[Omega]0 (t - s)], {s, 0, t}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, t> 0}], {\[Alpha]> > 0, \[Omega]0> 0, t> 0}]]; > > \[CapitalDelta]si[\[Alpha]_, \[Omega]0_, t_] = > Re[FullSimplify[ > Integrate[ > J1[\[Alpha], \[Omega]0, s]*Sin[2 \[Omega]0 (t - s)], {s, 0, t}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, \[Lambda]> 0, > t> 0}], {\[Alpha]> 0, \[Omega]0> 0, t> 0}]]; > > \[CapitalPi]co[\[Alpha]_, \[Omega]0_, t_] = > Re[FullSimplify[ > Integrate[(J2[\[Alpha], \[Omega]0, s] + > J3[\[Alpha], \[Omega]0, s] + J4[\[Alpha], \[Omega]0, s])* > Cos[2 \[Omega]0 (t - s)], {s, 0, t}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, t> 0}], {\[Alpha]> > 0, \[Omega]0> 0, \[Lambda]> 0, t> 0}]]; > > \[CapitalPi]si[\[Alpha]_, \[Omega]0_, t_] = > Re[FullSimplify[ > Integrate[(J2[\[Alpha], \[Omega]0, s] + > J3[\[Alpha], \[Omega]0, s] + J4[\[Alpha], \[Omega]0, s])* > Sin[2 \[Omega]0 (t - s)], {s, 0, t}, > Assumptions -> {\[Alpha]> 0, \[Omega]0> 0, t> 0}], {\[Alpha]> > 0, \[Omega]0> 0, t> 0}]]; > > Out[22]= $Aborted > > \[CapitalDelta]co[0.1, 0.5, 0.1, 5.] > > -0.198356 - 1.08996*10^-17 \[ImaginaryI] > > \[CapitalDelta]si[0.1, 0.5, 0.1, 5.] > > 0.404226+ 0. \[ImaginaryI] > > \[CapitalPi]co[0.1, 0.5, 0.1, 5.] > > 0.148022- 5.29091*10^-17 \[ImaginaryI] > > \[CapitalPi]si[0.1, 0.5, 0.1, 5.] > > 0.54091- 5.42101*10^-17 \[ImaginaryI] > > Clear[A0] > > A0[r_] = {{Cosh[2 r], 0}, {0, Cosh[2 r]}}; > B0 = {{b, 0}, {0, b}}; > > Clear[At] > > At[\[Alpha]_, \[Omega]0_, t_, r_] := > Re[A0[r] + {{Subscript[\[CapitalDelta], \[CapitalGamma]][\[Alpha], \ > \[Omega]0, > t] + (\[CapitalDelta]co[\[Alpha], \[Omega]0, > t] - \[CapitalDelta]si[\[Alpha], \[Omega]0, > t]), -(\[CapitalDelta]si[\[Alpha], \[Omega]0, > t] - \[CapitalPi]co[\[Alpha], \[Omega]0, > t])}, {-(\[CapitalDelta]si[\[Alpha], \[Omega]0, > t] - \[CapitalPi]co[\[Alpha], \[Omega]0, t]), > Subscript[\[CapitalDelta], \[CapitalGamma]][\[Alpha], \[Omega]0, > t] - (\[CapitalDelta]co[\[Alpha], \[Omega]0, > t] - \[CapitalDelta]si[\[Alpha], \[Omega]0, t])}}]; > > MatrixForm[ArrayFlatten[At[0.1, 0.5, 0.1, 5., 1.]]] > > \!\(\* > TagBox[ > RowBox[{"(", "\[NoBreak]", GridBox[{ > {"4.206008542870848`", > RowBox[{"-", "0.25620413800854397`"}]}, > { > RowBox[{"-", "0.25620413800854397`"}], "5.411172395695137`"} > }, > GridBoxAlignment->{ > "Columns" -> {{Left}}, "ColumnsIndexed" -> {}, > "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, > GridBoxSpacings->{"Columns" -> { > Offset[0.27999999999999997`], { > Offset[0.7]}, > Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { > Offset[0.2], { > Offset[0.4]}, > Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], > Function[BoxForm`e$, > MatrixForm[BoxForm`e$]]]\) > > Ct[\[Omega]0_, t_, r_] = > ArrayFlatten[{{Sinh[2 r]/2 Cos [2 \[Omega]0 t], > Sinh[2 r]/2 Sin [2 \[Omega]0 t]}, {Sinh[2 r]/2 Cos [ > 2 \[Omega]0 t], -Sinh[2 r]/2 Cos [2 \[Omega]0 t]}}]; > > MatrixForm[ArrayFlatten[Ct[0.1, 5., 1.]]] > > \[Sigma]t[\[Alpha]_, \[Omega]0_, t_, r_] = > ArrayFlatten[{At[\[Alpha], \[Omega]0, t, r], > Ct[\[Omega]0, t, r]}, {Transpose[Ct[\[Omega]0, t, r]], > At[\[Alpha], \[Omega]0, t, r]}]; > MatrixForm[ArrayFlatten[\[Sigma]t[0.1, 0.5, 5., 1.]]] > > Subscript[I, 1] = > Simplify[Det[ > At[\[Alpha], \[Omega]0, t, r]], {\[Alpha]> 0, \[Omega]0> 0, > t> 0, r> 0}] > > Subscript[I, 3] = > Simplify[Det[Ct[\[Omega]0, t, r]], {\[Omega]0> 0, t> 0, r> 0}] > > > > Subscript[I, 4] = > Simplify[Det[\[Sigma]t[\[Alpha], \[Omega]0, t, r]], {\[Alpha]> > 0, \[Omega]0> 0, t> 0, r> 0}]; > > Subscript[C, +] = > Simplify[Sqrt[( > Subscript[I, 1]^2 + Subscript[I, 3]^2 - Subscript[I, 4] + > Sqrt[(Subscript[I, 1]^2 + Subscript[I, 3]^2 - Subscript[I, > 4])^2 - (2 Subscript[I, 1]*Subscript[I, 3])^2 ])/( > 2 Subscript[I, 1])]]; > Subscript[C, -] = > Simplify[Sqrt[( > Subscript[I, 1]^2 + Subscript[I, 3]^2 - Subscript[I, 4] - > Sqrt[(Subscript[I, 1]^2 + Subscript[I, 3]^2 - Subscript[I, > 4])^2 - (2 Subscript[I, 1]*Subscript[I, 3])^2 ])/( > 2 Subscript[I, 1])]]; > > Subscript[a, n] = Simplify[Sqrt[Subscript[I, 1]]]; > > Subscript[\[Kappa], -] = > Simplify[ > Sqrt[(Subscript[a, n] - Subscript[C, +])*(Subscript[a, n] - > Subscript[C, -])]]; > > Subscript[x, m] = > Simplify[(Subscript[\[Kappa], -]^2 + 1/4)/( > 2 Subscript[\[Kappa], -])]; > > Subscript[E, F][\[Alpha]_, \[Omega]0_, \[Lambda]_, t_, r_] := > Re[(Subscript[x, m] + 1/2) ln [ > Subscript[x, m] + 1/2] - (Subscript[x, m] - 1/2) ln [ > Subscript[x, m] - 1/2]]; > > Subscript[E, F][0.1, 0.5, 5., 1.] > > Plot[Subscript[E, F][0.1, 0.5, t, 1.], > {t, 0, 5}] > > -- Daniel Huber Metrohm Ltd. Oberdorfstr. 68 CH-9100 Herisau Tel. +41 71 353 8585, Fax +41 71 353 8907 E-Mail:<mailto:dh at metrohm.com> Internet:<http://www.metrohm.com>