To Wolfram Mathgroup. Help me..
- To: mathgroup at smc.vnet.net
- Subject: [mg121026] To Wolfram Mathgroup. Help me..
- From: Jiwan Kim <hwoarang.kim at gmail.com>
- Date: Tue, 23 Aug 2011 05:48:30 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Hello, mathgroup. I send you this mail to ask your help in fixing the error. I have a minor error message in the following code. I have got a error message "No more memory available.Mathematica kernel has shut down." whenever I wanted to get ReflNorm[t] by integrating f[z]*Eta[z,t]. This is not a complex code. This is strange. If I use 'NIntegrate' instead of 'Integrate', it seems working well. But, there appears another error message like following. "NIntegrate::inumr: "The integrand 0.0247936\ \[ExponentialE]^<<1>>\ \ Sign[<<1>>]\ (6.5\ Cos[1.08875-0.0389557\ z]-1.3\ Sin[1.08875-<<21>>\ \ z]) has evaluated to non-numerical values for all sampling points in \ the region with boundaries {{0,200}}."" Could you help me to fix these errors ? Thank you in advance. Best regards, Jiwan. Remove["Global`*"]; \[Rho] := 8910;(* mass density : kg/m^3 *) v := 4080;(* sound velocity : nm/ns *) \[Beta] := 1.3 10^-5;(* linear expansion : /K *) B := 1.8 10^11; (* bulk modulus : Pa *) c := 3 10^8; (* light speed : nm/ns *) \[Lambda] := 800; \[Omega] := 2 \[Pi] c/\[Lambda]; (* light wavelength : nm *) Cl := 3.96 10^6; (* lattice heat cap. : J/m^3K = 26.1 J/mol.K *) g := 4.4 10^17; (* coupling constant : W/m^3.K *) K := 91; (* thermal conductivity : W/m.K *) Q1 := 0.2199; (* (g/K)^(1/2) : /nm *) \[Xi]1 := 13.5; (* pump absorption depth: nm *) \[Xi]2 := 14.5; (* probe absorption depth: nm *) Dl := 2.3 10^-5; (* diffusivity : m^2/s *) n := 2.48; k := 4.38 ;(* reflectivity index at 800 nm *) A1 := 1.3; A2 := 6.5; (* dn/d\[Eta], dk/d\[Eta] *) R := 0.3; (* reflection at interface *) \[Eta]0 := 1; f0 = 8 (2 \[Pi])/\[Lambda] (n^2 (n^2 + k^2 - 1)^2 + k^2 (n^2 + k^2 + 1)^2)^(1/2)/((n + 1)^2 + k^2)^2; \[Phi] = ArcTan[(k (n^2 + k^2 + 1))/(n (n^2 + k^2 - 1))]; f[z_] := f0 (A1 Sin[(4 \[Pi] n z)/\[Lambda] - \[Phi]] + A2 Cos[(4 \[Pi] n z)/\[Lambda] - \[Phi]]) Exp[-z/\[Xi]2]; \[Eta][z_, t_] := \[Eta]0 \[Xi]1 Q1 Sign[v t - z] Exp[-Q1 Abs[z - v t]]; ReflNorm[t_] = Integrate[f[z]*\[Eta][z, t], {z, 0, Infinity}] Plot[ReflNorm[t], {t, -0.02, 0.05}, PlotRange -> All] -- ------------------------------------------------------------------------------------------------- Institute of Physics and Chemistry of Materials Strasbourg (IPCMS) Department of Ultrafast Optics and Nanophotonics (DON) 23 rue du Loess, B.P. 43, 67034 STRASBOURG Cedex 2, France
- Follow-Ups:
- Re: To Wolfram Mathgroup. Help me..
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: To Wolfram Mathgroup. Help me..
- From: "W. Craig Carter" <ccarter@mit.edu>
- Re: To Wolfram Mathgroup. Help me..